

HD74HC74

Dual D-type Flip-Flops (with Preset and Clear)

REJ03D0549-0300 Rev.3.00 Oct 27, 2008

Description

The flip-flop has independent data, preset, clear, and clock inputs and Q and \overline{Q} outputs. The logic level present at the data input is transferred to the output during the positive going transition to the clock pulse. Preset and clear are independent of the clock and accomplished by a low level at the appropriate input.

Features

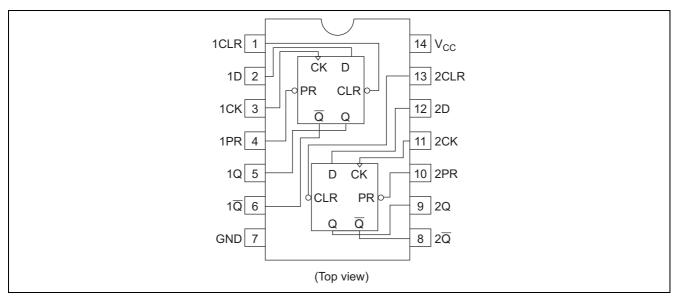
- High Speed Operation: t_{pd} (Clock to Q or \overline{Q}) = 14 ns typ (C_L = 50 pF)
- High Output Current: Fanout of 10 LSTTL Loads
- Wide Operating Voltage: $V_{CC} = 2 \text{ to } 6 \text{ V}$
- Low Input Current: 1 µA max
- Low Quiescent Supply Current: I_{CC} (static) = 2 μ A max (Ta = 25°C)
- Ordering Information

Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
HD74HC74P	DILP-14 pin	PRDP0014AB-B (DP-14AV)	Ρ	_
HD74HC74FPEL	SOP-14 pin (JEITA)	PRSP0014DF-B (FP-14DAV)	FP	EL (2,000 pcs/reel)
HD74HC74RPEL	SOP-14 pin (JEDEC)	PRSP0014DE-A (FP-14DNV)	RP	EL (2,500 pcs/reel)
HD74HC74TELL	TSSOP-14 pin	PTSP0014JA-B (TTP-14DV)	т	ELL (2,000 pcs/reel)

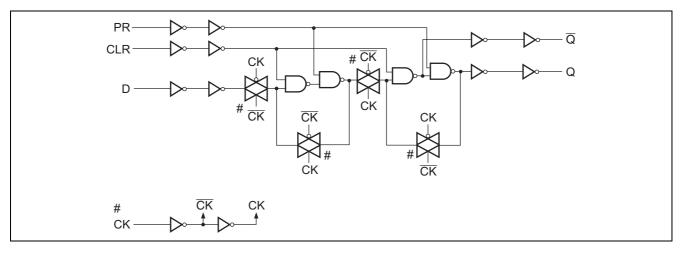
Note: Please consult the sales office for the above package availability.

Function Table

	Inp	Outputs					
Preset	Clear	Clock	Data	Q	Q		
L	Н	Х	Х	Н	L		
Н	L	Х	Х	L	Н		
L	L	Х	Х	H ^{*1}	H ^{*1}		
Н	Н		Н	Н	L		
Н	Н		L	L	Н		
Н	Н	L	Х	No change			
Н	Н	Н	Х	No change			
Н	Н		Х	No change			


H: High level

L: Low level


X: Irrelevant

Note: 1. Q and \overline{Q} will remain High as long as Preset and Clear are Low, but Q and \overline{Q} are unpredictable, if Preset and Clear go High simultaneously.

Pin Arrangement

Logic Diagram (1/2)

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage range	V _{CC}	-0.5 to 7.0	V
Input / Output voltage	Vin, Vout	-0.5 to V _{CC} +0.5	V
Input / Output diode current	Iik, Iok	±20	mA
Output current	lo	±25	mA
V _{CC} , GND current	I _{CC} or I _{GND}	±50	mA
Power dissipation	PT	500	mW
Storage temperature	Tstg	-65 to +150	۵°

Note: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

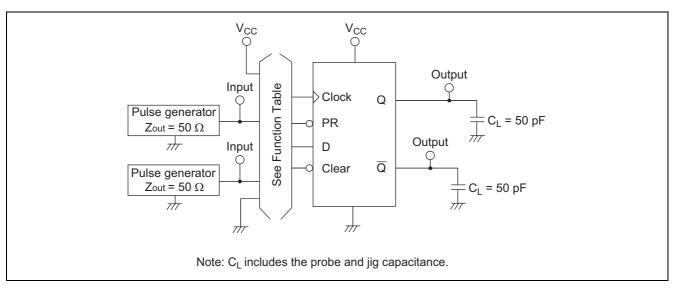
Item	Symbol	Ratings	Unit	Conditions	
Supply voltage	V _{CC}	2 to 6	V		
Input / Output voltage	V _{IN} , V _{OUT}	0 to V _{CC}	V		
Operating temperature	Та	-40 to 85	°C		
		0 to 1000		$V_{CC} = 2.0 V$	
nput rise / fall time ^{*1}	t _r , t _f	0 to 500	ns	$V_{CC} = 4.5 V$	
		0 to 400	1	$V_{CC} = 6.0 V$	

Note: 1. This item guarantees maximum limit when one input switches. Waveform: Refer to test circuit of switching characteristics.

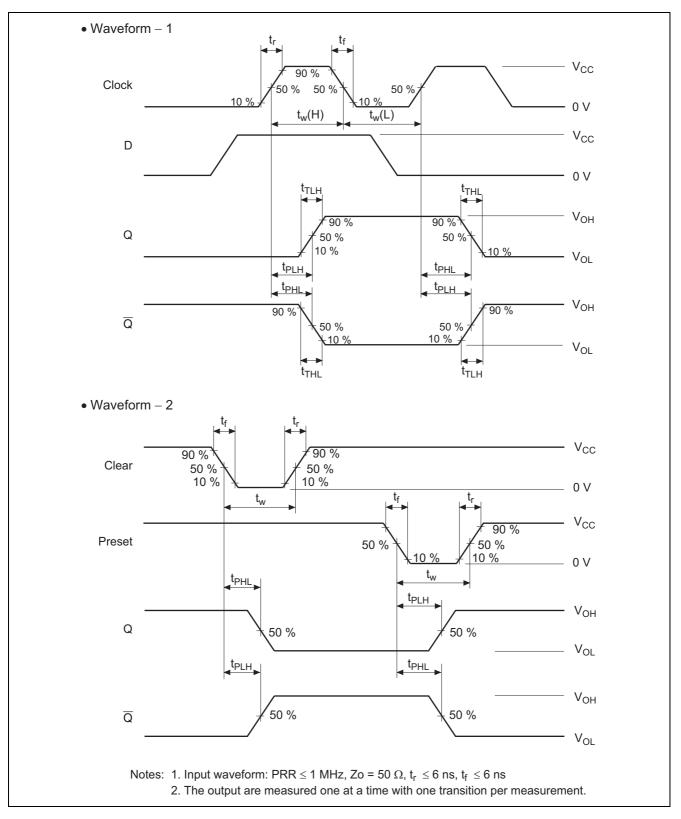
ltem	Symbol	v 00	Т	a = 25°	С	Ta = -40	to+85°C	11mi4	Test Conditions	
		V _{cc} (V)	Min	Тур	Max	Min	Max	Unit		
		2.0	1.5		—	1.5				
	VIH	4.5	3.15			3.15		V		
Input voltage		6.0	4.2	_	—	4.2				
input voltage		2.0	—	_	0.5		0.5			
	VIL	4.5	—	_	1.35	—	1.35	V		
		6.0	—		1.8		1.8			
	V _{он}	2.0	1.9	2.0	—	1.9			Vin = V _{IH} or V _{IL} $\frac{I_{OH} = -20 \ \mu A}{I_{OH} = -4 \ m A}$ $\frac{I_{OH} = -4 \ m A}{I_{OH} = -5.2 \ m A}$	
		4.5	4.4	4.5	—	4.4				$I_{OH} = -20 \ \mu A$
		6.0	5.9	6.0	—	5.9	—	V		
		4.5	4.18	_	—	4.13	—			$I_{OH} = -4 \text{ mA}$
Output voltage		6.0	5.68	_	—	5.63	—			$I_{OH} = -5.2 \text{ mA}$
Output voltage		2.0	—	0.0	0.1		0.1			
		4.5	—	0.0	0.1		0.1			I _{OL} = 20 μA
	V _{OL}	6.0	—	0.0	0.1		0.1	V	Vin = V _{IH} or V _{IL} $I_{OL} = 4 \text{ mA}$	
		4.5	—		0.26		0.33			$I_{OL} = 4 \text{ mA}$
		6.0	—		0.26		0.33			$I_{OL} = 5.2 \text{ mA}$
Input current	lin	6.0	_	_	±0.1		±1.0	μA	$Vin = V_{CC} \text{ or } GN$	ID
Quiescent supply current	I _{CC}	6.0			2.0		20	μΑ	$Vin = V_{CC} \text{ or } GN$	ID, Iout = 0 μ A

Electrical Characteristics

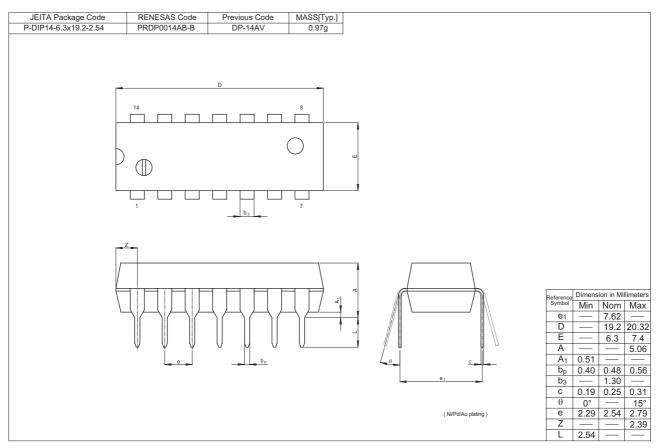
Switching Characteristics

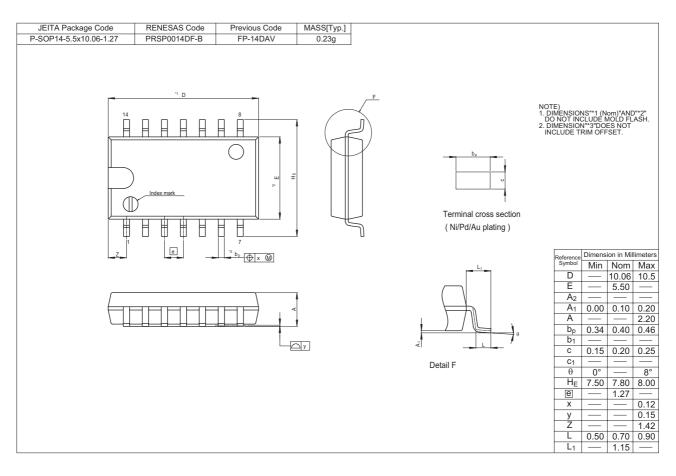

 $(C_L = 50 \text{ pF}, \text{ Input } t_r = t_f = 6 \text{ ns})$

ltem	Symbol	V _{cc} (V)	Ta = 25°C		Ta = -40 to +85°C		Unit	Test Conditions	
	Symbol	VCC (V)	Min	Тур	Max	Min	Max	Unit	Test conditions
		2.0	l		5	_	4		
Maximum clock frequency	f _{max}	4.5	l	35	25	_	20	MHz	
licquency		6.0	l		29	_	24		
	t _{PLH} , t _{PHL}	2.0		_	160	_	200	ns	
		4.5		14	32	_	40		Clock to Q or \overline{Q}
Propagation delay		6.0	_	_	27	—	34		
time		2.0	_	_	160	—	200	ns	Preset or Clear to Q or \overline{Q}
		4.5	_	13	32	—	40		
		6.0	_	_	27	—	34		
		2.0	100	_		125	—	ns	Data to Clock
Setup time	t _{su}	4.5	20	1		25	—		
		6.0	17	_	_	21	—		

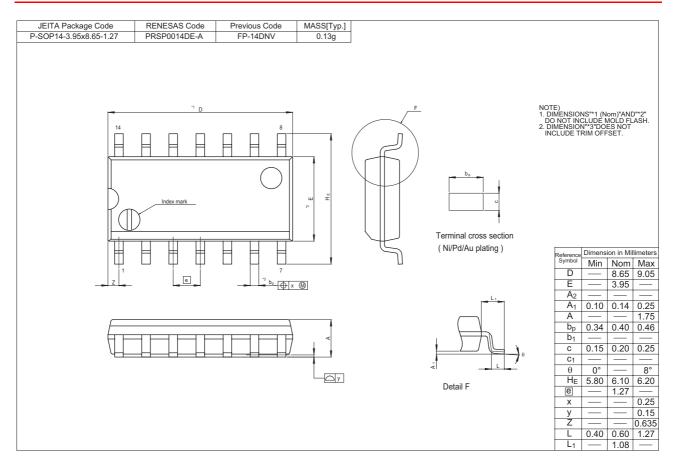

Switching Characteristics

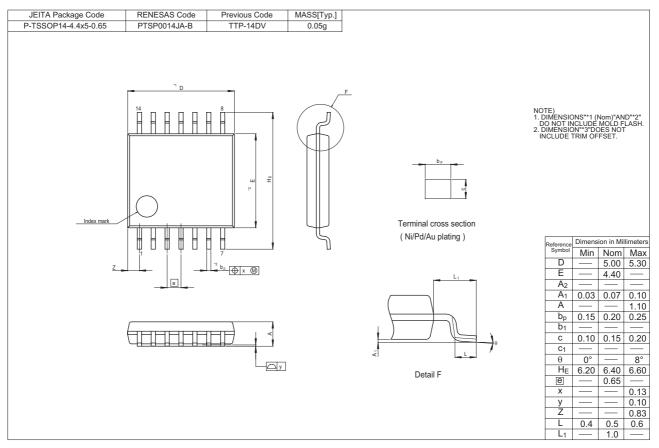
									$(C_L = 50 \text{ pF}, \text{ Input } t_r = t_f = 6 \text{ ns})$
ltem	Symbol	V 00	Ta = 25°C Ta = -40 to +85°C			to +85°C	Unit	Test Conditions	
	Symbol	V _{cc} (V)	Min	Тур	Max	Min	Max	Unit	Test Conditions
		2.0	5	_		5	—		
Hold time	t _h	4.5	5	0		5	—	ns	Clock to Data
		6.0	5	-5	_	5	—		
	t _{rem}	2.0	25	_	_	31	—	ns	Preset, Clear to Clock
Removal time		4.5	5	_	—	6	—		
		6.0	4	_	—	5	—		
		2.0	80	_	—	100	—		Clock, Preset, Clear
Pulse width	t _w	4.5	16	8	—	20	—	ns	
		6.0	14	_		17	—		
Output rise/fall time		2.0	l	_	75	_	95		
	t_{TLH}, t_{THL}	4.5		5	15	_	19	ns	
		6.0		_	13	_	16		
Input capacitance	Cin	_	—	5	10	_	10	pF	


Test Circuit



Waveforms


Package Dimensions



RENESAS

HD74HC74

RENESAS

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the date this document, when exporting the products or the technology described herein, you should follow the applicable export control laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a set exception of protein ting from the internation included in this document. Dut Renesas asproaces are not exception of protein ting from the protein ting from the internation included in this document.
 When using or otherwise requires the failue or mating inclusion incurred and this document. Dut Renesas asproaces are area on dealing of the internation in the date this document.
 When using or otherwise requires the failue or mating inclusion for the purpose, please contacts are not designed and the protein document.
 When using or otherwise requires the failue or mating inclusion in the protein document.
 When using or otherwise requires on the inf

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com