

低飽和型レギュレータ

■概要

NJM2871/A,NJM2872/Aはバイポーラプロセスを使用し、ローノイズ、高リップル除去比を実現した低飽和型レギュレータです。

MTP5の小型パッケージに搭載し、出力電流150mA、小型 1.0μ Fセラミックコンデンサ対応の為、携帯通信機器の応用に最適です。また、出力電圧精度は $\pm 2\%$ 、 $\pm 1\%$ の高精度のラインアップがあります。

外形

特徵

高リップル除去比 70dB typ. (f=1kHz,Vo=3V品) ローノイズ Vno=30µVrms typ.(Cp=0.01µF)

1.0μFセラミックコンデンサ対応 (Vo 2.7V) 出力電流 lo(max.)=150mA

高精度出力電圧 Vo±2%

Vo±1%:A Version

低入出力間電位差 0.10V typ. (lo=60mA時)

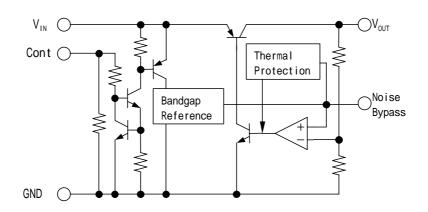
入力電圧範囲 +2.5V~+14V (Vo 2.0V version)

ON/OFF制御付

サーマルシャットダウン回路内蔵

過電流保護回路内蔵 バイポーラ構造

パッケージ SOT-23-5(MTP5)


■ 端子配列

ピン配置 5 4 1.V_{IN} 2.GND 3.CONTROL(アクティブハイ) 4.NOISE BYPASS 1 2 3 5.V_{OUT}

■ 等価回路図

NJM2871/A, NJM2872/A

絶対最大定格

(Ta=25)

			•		
項目	記号	定	格	単 位	
入力電圧	V _{IN}	+14		V	
コントロール電圧	V_{CONT}	+14(*1)		V	
消費電力	P _D	SOT-23-5	350(*2) 200(*3)	mW	
動作温度	Topr	- 40 ~ + 85			
保存温度	Tstg	- 40 ~ + 125			

(*1): 入力電圧が14V以下の場合は入力電圧と等しくなります。

(*2): 基板実装時 114.3 x 76.2 x 1.6mm(2層)でEIA/JEDEC規格準拠による。

(*3): 単体時

入力電圧範囲

V_{IN}=+2.5~+14V(出力電圧Vo: 2.1V未満の製品)

電気的特性

(Vo > 2.0V version:)

 $V_{\text{IN}} = V_0 + 1 \text{V}, \ C_{\text{IN}} = 0.1 \mu\text{F}, \ C_0 = 1.0 \mu\text{F}; \ V_0 \qquad 2.7 \text{V} \ (C_0 = 2.2 \mu\text{F}; \ V_0 \qquad 2.6 \text{V}), \ C_p = 0.01 \mu\text{F}, \ T_0 = 2.5 \qquad)$

項 目	記 号	条件	最 小	標準	最 大	単 位
出力電圧 V	Vo	lo=30mA	- 2%	-	+2%	V
山/J电冮	VO	Io=30mA, A Version	- 1%	-	+1%	V
無負荷時無効電流	I_Q	lo=0mA, Icont除く	-	120	180	μA
OFF時無効電流	I _{Q(OFF)}	V _{CONT} =0V	-	-	100	nA
出力電流	lo	Vo - 0.3V	150	200	ı	mA
ラインレギュレーション	Vo/ V _{IN}	V _{IN} =Vo+1V ~ Vo+6V, Io=30mA	-	-	0.10	%/V
ロードレギュレーション	Vo/ Io	lo=0 ~ 100mA	-	-	0.03	%/mA
入出力間電位差	V _{I-O}	lo=60mA	-	0.10	0.18	V
リップル除去比	RR	ein=200mVrms,f=1kHz,lo=10mA, Vo=3V品	-	70	ı	dB
出力電圧温度係数	Vo/ Ta	Ta=0 ~ 85 , lo=10mA	-	±50	ı	ppm/
出力雑音電圧	V _{NO}	f=10Hz~80kHz, lo=10mA, Vo=3V品	-	30	1	μVrms
出力ON制御電圧	V _{CONT(ON)}		1.6	-	ı	V
出力OFF制御電圧	V _{CONT(OFF)}		-	-	0.6	V

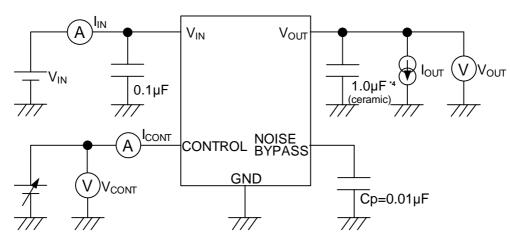
(Vo 2.0V version:)

 $V_{IN}=V_{O}+1V$, $C_{IN}=0.1\mu F$, $C_{O}=4.7\mu F$, $C_{D}=0.01\mu F$, $T_{O}=25$

項目	記号	条件	最 小	標準	最 大	単 位
出力電圧	Vo	lo=30mA	- 2%	-	+2%	V
山/J电冮	VO	Io=30mA, A Version	- 1%	-	+1%	V
無負荷時無効電流	IQ	Io=0mA, Icont除く	-	120	180	μA
OFF時無効電流	I _{Q(OFF)}	V _{CONT} =0V	-	-	100	nA
出力電流	lo	Vo - 0.3V	150	200	1	mA
ラインレギュレーション	Vo/ V _{IN}	V _{IN} =Vo+1V ~ Vo+6V, Io=30mA	-	-	0.10	%/V
ロードレギュレーション	Vo/ Io	lo=0 ~ 100mA	-	-	0.03	%/mA
リップル除去比	RR	ein=200mVrms,f=1kHz,lo=10mA, Vo=1.8V品	-	75	1	dB
出力電圧温度係数	Vo/ Ta	Ta=0~85 , lo=10mA	-	±50	1	ppm/
出力雑音電圧	V_{NO}	f=10Hz~80kHz, lo=10mA, Vo=1.8V品	-	22	1	μVrms
出力ON制御電圧	V _{CONT(ON)}		1.6	-	-	V
出力OFF制御電圧	V _{CONT(OFF)}		-	-	0.6	V

各出力電圧共通表記としているため、個別仕様書とは異なることがあります。

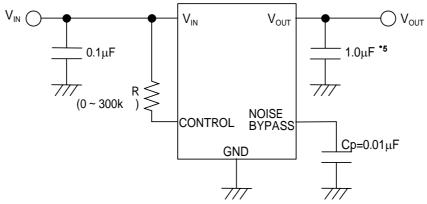
別途仕様書にて確認の程、お願いいたします。


出力電圧ランク

品 名	出力電圧		
NJM287××15	1.5V		
NJM287××18	1.8V		
NJM287××21	2.1V		
NJM287××23	2.3V		
NJM287××25	2.5V		
NJM287××26	2.6V		
NJM287××27	2.7V		
NJM287××28	2.8V		

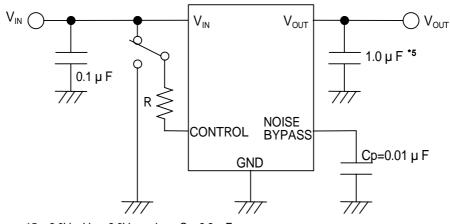
品 名	出力電圧		
NJM287××285	2.85V		
NJM287××29	2.9V		
NJM287××03	3.0V		
NJM287××31	3.1V		
NJM287××32	3.2V		
NJM287××33	3.3V		
NJM287××34	3.4V		
NJM287××35	3.5V		

品 名	出力電圧		
NJM287××355	3.55V		
NJM287××38	3.8V		
NJM287××04	4.0V		
NJM287××45	4.5V		
NJM287××46	4.6V		
NJM287××47	4.7V		
NJM287××05	5.0V		


測定回路図

*4 2.0V < Vo 2.6V version : $Co=2.2\mu F(ceramic)$ Vo 2.0V version : $Co=4.7\mu F(ceramic)$

応用回路例


ON/OFF機能を使用しないとき

*5 2.0V < Vo 2.6V version : Co=2.2 μ F Vo 2.0V version : Co=4.7 μ F

コントロール端子はVINに接続してください。

ON/OFF機能を使用したとき

*5 2.0V < Vo 2.6V version : Co=2.2 μ F Vo 2.0V version : Co=4.7 μ F

コントロール端子はHレベルでONし、オープンもしくはGNDレベルでOFFします。

・ノイズバイパスコンデンサ Cp について

ノイズバイパスコンデンサ Cp はバンドギャップ基準電圧から発生するノイズを取り除きます。 その為、ノイズバイパスコンデンサ Cp を大きくすると、ノイズ低減やリップルリジェクション向上が図られます。 しかし、推奨値(電気的特性共通条件欄に記載している容量値)未満にすると、発振する場合がありますので、ノイズバイパスコンデンサ Cp は、推奨値以上の容量を接続してください。

・コントロール端子 - VIN 間に抵抗 R を接続する場合

本抵抗を挿入することによりコントロール電圧が高くなった場合にコントロール端子に流れる電流が大きくなるのを制限することができます。コントロール電流の低減が不要であれば、本抵抗の接続は必要ございません。

コントロール端子 - VIN 端子間にプルアップ抵抗 R を接続するとコントロール電流は低減されますが、抵抗 R での電圧降下が発生しますので、コントロール端子に印加される電圧が出力 ON 制御電圧を満足できるよう設定してください。

出力 ON 制御の最低電圧 / 電流は周囲温度によって変動しますので、抵抗 R を挿入される場合は特性例の温度特性をご確認の上、抵抗値を選定してください。

・入力コンデンサ C_N について

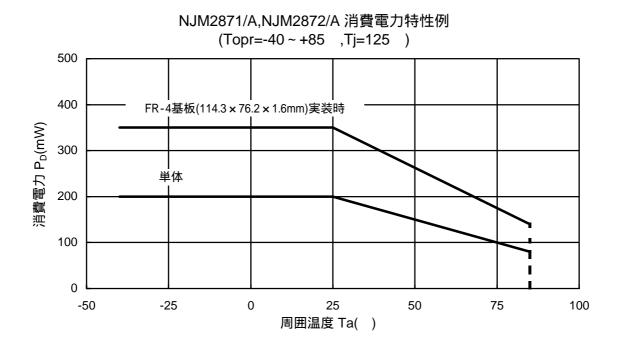
入力コンデンサ C_{IIN} は、電源インピーダンスが高い場合や、 V_{IN} 又は GND 配線が長くなった場合の発振を防止する効果があります。

そのため、推奨値(電気的特性共通条件欄に記載している容量値)以上の入力コンデンサC_{IN}をV_{IN}端子- GND端子間にできるだけ配線が短くなるように接続してください。

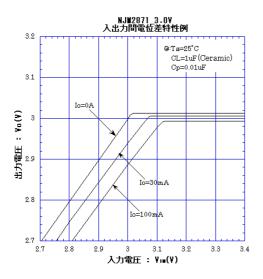
・出力コンデンサ Co について

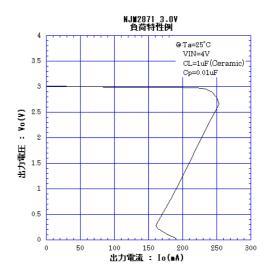
出力コンデンサ Co はレギュレータ内蔵のエラーアンプの位相補償を行うために必要であり、容量値と ESR(Equivalent Series Resistance: 等価直列抵抗)が回路の安定度に影響を与えます。

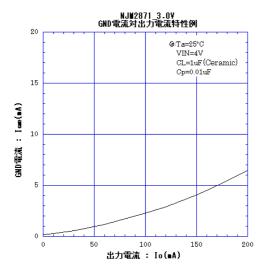
推奨容量値(電気的特性共通条件欄に記載している容量値)未満の Co を使用すると内部回路の安定度が低下し、出力ノイズの増加、レギュレータの発振等が起こる可能性がありますので、安定動作のために推奨容量値以上の Co を、Vour 端子 - GND 端子間に最短配線で接続して下さい。

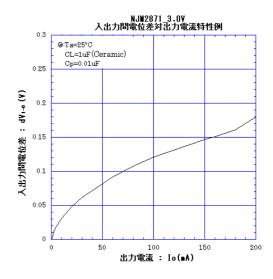

推奨容量値は出力電圧により異なり、低出力電圧品では大きな容量値を必要とする場合がありますので、 出力電圧毎に推奨容量値をご確認ください。尚、Co は容量値が大きいほど出力ノイズとリップル成分が減少し、出力負荷変動に対する応答性も向上させることが出来ます。

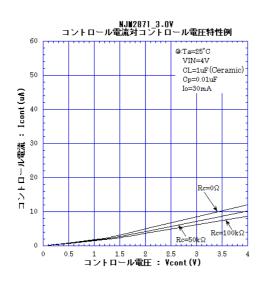
また、コンデンサ固有の特性変動量(周波数特性、温度特性、DC バイアス特性)やバラツキを充分に考慮する必要がありますので、温度特性が良く、出力電圧に対し余裕を持った耐圧のものを推奨致します。

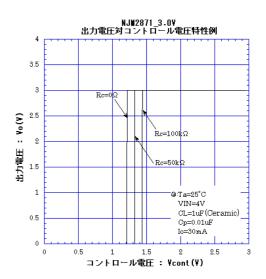

本製品は低ESR品を始め、幅広い範囲のESRのコンデンサで安定動作するよう設計されておりますが、コンデンサの選定に際しては、上記特性変動等もご考慮の上、適切なコンデンサを選定してください。

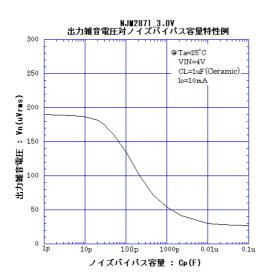

新日本無線

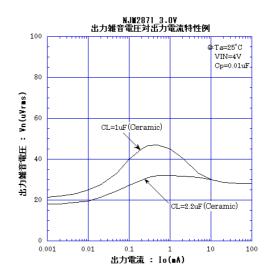

■ 消費電力-周囲温度特性例

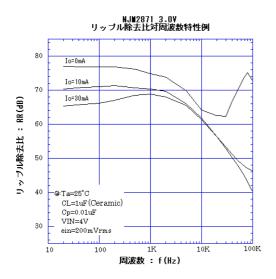


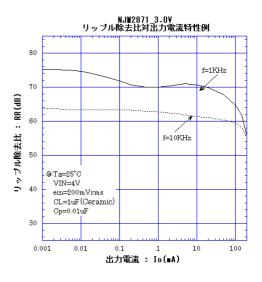

特性例

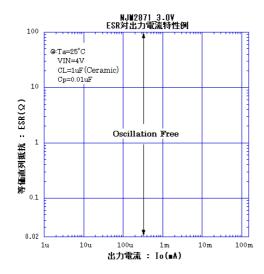


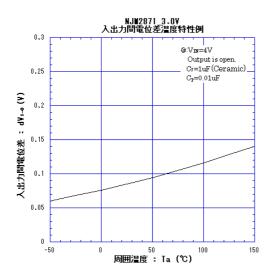


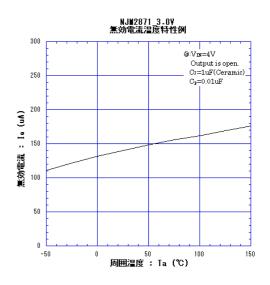


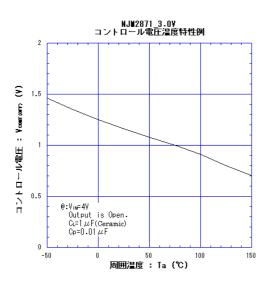


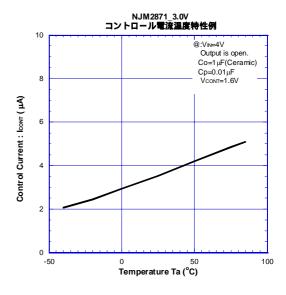


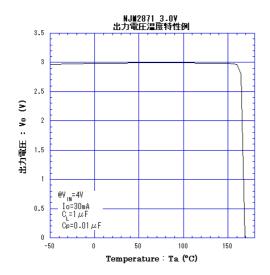

特性例










特性例

<注意事項>
このデータブックの掲載対容の正確さには
万全を期しておりますが、掲載対容について
何らかか: 語がは保証を行うものではありませ
ん。とくに応用回路については、製品の代表
的な応用例を説明するためのものです。また、
工業所有権その他の権利の実施権の許諾を伴
うものではなく、第三者の権利を侵害しない
ことを保証するものでもありません。