Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78P018FY is a member of the μ PD78018FY Subseries of 78K/0 Series products. The internal mask ROM of the μ PD78018FY is replaced with one-time PROM or EPROM.

Because the μ PD78P018FY can be programmed by users, it is ideally suited for applications involving the evaluation of systems in development stages, small-scale production of many different products, and rapid development and time-to-market of new products.

Caution The μ PD78P018FYDW and 78P018FYKK-S are not guaranteed to maintain the reliability level required for mass production of the customer's devices. Please use only experimentally or for evaluation purposes during trial manufacture.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing. μ PD78018F, 78018FY Subseries User's Manual: U10659E 78K/0 Series User's Manual – Instructions: U12326E

FEATURES

- Pin compatible with mask ROM version (except VPP pin)
- Internal PROM: 60 Kbytes Note 1

 μPD78P018FYDW, 78P018FYKK-S: Re-programmable (suited for system evaluation)

 μPD78P018FYCW, 78P018FYGC-AB8: Programmable only once (suited for small-scale production)
- Internal high-speed RAM: 1024 bytes Note 1
- Internal expansion RAM: 1024 bytes Note 2
- Internal buffer RAM: 32 bytes
- Supports the I²C bus interface
- Operable over same supply voltage range as mask ROM version: VDD = 1.8 to 5.5 V (except an A/D converter)
- QTOP™ microcontroller supported
- **Notes 1.** The capacities of internal PROM and internal high-speed RAM can be changed by means of the internal memory size switching register (IMS).
 - 2. The capacity of the internal expansion RAM can be changed by means of the internal expansion RAM size switching register (IXS).
- **Remarks 1.** QTOP Microcontroller is a general term for microcontrollers which incorporate one-time PROM and are totally supported by NEC's programming service (from programming to marking, screening, and verification).
 - 2. For the differences between the PROM version and mask ROM versions, refer to 1. DIFFERENCES BETWEEN THE μPD78P018FY AND MASK ROM VERSIONS.

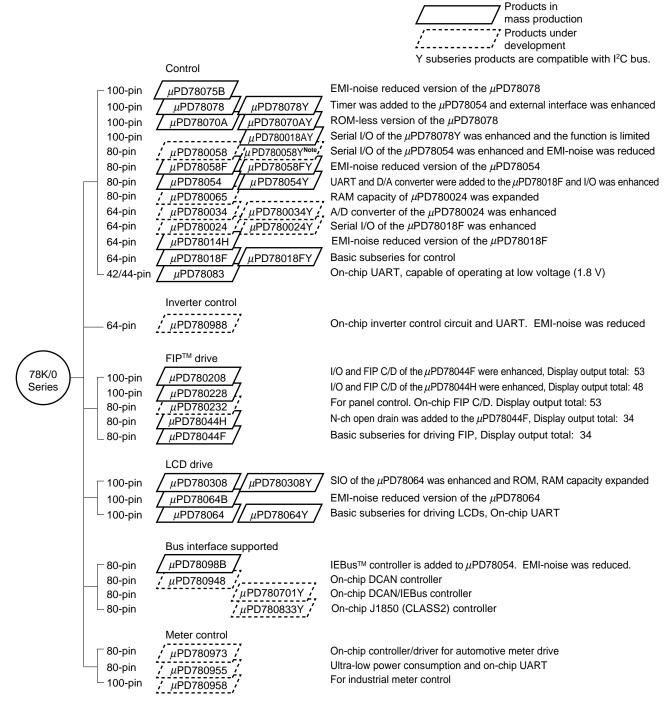
In this document, the term PROM is used in parts common to one-time PROM versions and EPROM versions.

The information in this document is subject to change without notice.

ORDERING INFORMATION

Part Number	Package	Internal ROM	
μPD78P018FYCW	64-pin plastic shrink DIP (750 mils)	One-time PROM	
μ PD78P018FYDW	64-pin ceramic shrink DIP (with window) (750 mils)	EPROM	
μ PD78P018FYGC-AB8	64-pin plastic QFP (14 × 14 mm)	One-time PROM	
μ PD78P018FYKK-S	64-pin ceramic WQFN (14 × 14 mm)	EPROM	

QUALITY GRADE


Part Number	Package	Quality Grades
μPD78P018FYCW	64-pin plastic shrink DIP (750 mils)	Standard
μ PD78P018FYDW	64-pin ceramic shrink DIP (with window) (750 mils)	Not applicable
		(for function evaluation)
μ PD78P018FYGC-AB8	64-pin plastic QFP (14 × 14 mm)	Standard
μ PD78P018FYKK-S	64-pin ceramic WQFN (14 × 14 mm)	Not applicable
		(for function evaluation)

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

★ 78K/0 SERIES PRODUCT LINEUP

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

Note Under planning

The major functional differences among the Y subseries are shown below.

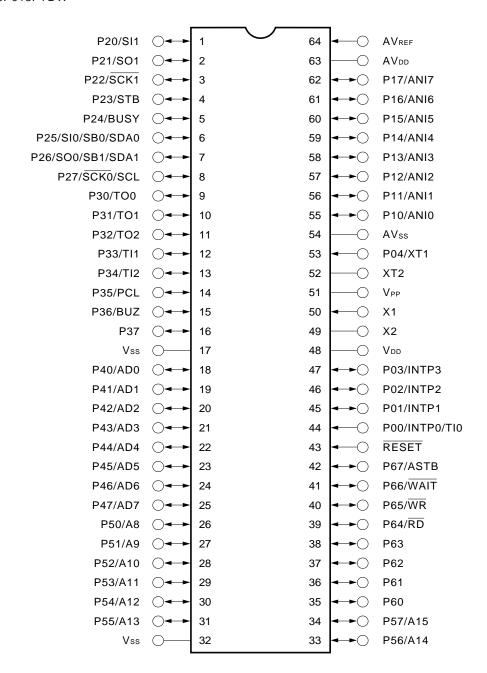
	Function	ROM Capacity	Configuration of Serial Interface		I/O	VDD MIN.
Subseries	s Name					Value
Control	μPD78078Y	48 K to 60 K	3-wire/2-wire/I ² C: 3-wire with automatic transmit/receive function:	1 ch	88	1.8 V
	μPD78070AY	-	3-wire/UART:	1 ch	61	2.7 V
	μPD780018AY	48 K to 60 K	3-wire with automatic transmit/receive function: Time-division 3-wire: I ² C bus (multimaster supported):	1 ch 1 ch 1 ch	88	
	μPD780058Y	24 K to 60 K	3-wire/2-wire/I ² C: 3-wire with automatic transmit/receive function: 3-wire/time-division UART:	1 ch 1 ch 1 ch	68	1.8 V
	μPD78058FY	48 K to 60 K	3-wire/2-wire/I ² C:	1 ch	69	2.7 V
	μPD78054Y	16 K to 60 K	3-wire with automatic transmit/receive function: 3-wire/UART:	1 ch 1 ch		2.0 V
	μPD780034Y	8 K to 32 K	UART:	1 ch	51	1.8 V
	μPD780024Y		3-wire: I ² C bus (multimaster supported):	1 ch 1 ch		
	μPD78018FY	8 K to 60 K	3-wire/2-wire/I ² C: 3-wire with automatic transmit/receive function:	1 ch 1 ch	53	
LCD drive	μPD780308Y	48 K to 60 K	3-wire/2-wire/I ² C: 3-wire/time-division UART: 3-wire:	1 ch 1 ch 1 ch	57	2.0 V
	μPD78064Y	16 K to 32 K	3-wire/2-wire/l ² C: 3-wire/UART:	1 ch 1 ch		

Remark The functions other than the serial interface are common to the Subseries without Y.

FUNCTION OVERVIEW (1/2)

	PROM	60 Kbytes Note 1		
Internal	High-speed RAM	1024 bytes Note 1		
memory	Expansion RAM	1024 bytes Note 2		
	Buffer RAM	32 bytes		
Memory s	space	64 Kbytes		
General-p	ourpose registers	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)		
Minimum ir	struction execution time	Minimum instruction execution time cycle modification function provided.		
	When main system	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs (@ 10.0-MHz operation)		
	When subsystem clock selected	122 μs (@ 32.768-kHz operation)		
Instructio	n set	• 16-bit operation		
		Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits)		
		Bit manipulate (set, reset, test, Boolean operation)		
		BCD adjust, etc.		
I/O ports		Total: 53		
		• CMOS input: 2		
		• CMOS I/O: 47		
		N-channel open-drain I/O		
		(15-V withstand voltage): 4		
A/D conv	erter	• 8-bit resolution × 8 channels		
		• Operable over a wide power supply voltage range: VDD = 2.2 to 5.5 V		
Serial inte	erface	3-wire serial I/O mode/2-wire serial I/O mode/I ² C bus mode selectable: 1 channel 3-wire serial I/O mode (on-chip max. 32 bytes automatic data transmit/receive function): 1 channel		
Timer		16-bit timer/event counter: 1 channel		
		8-bit timer/event counter: 2 channels		
		Watch timer: 1 channel		
		Watchdog timer: 1 channel		
Timer output		3 (14-bit PWM output × 1)		
Clock output		39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz (@ 10.0-MHz operation with main system clock), 32.768 kHz (@ 32.768-kHz operation with subsystem clock)		
Buzzer output		2.4 kHz, 4.9 kHz, 9.8 kHz (@ 10.0-MHz operation with main system clock)		
Vectored	Maskable	Internal: 8 External: 4		
interrupt sources	Non-maskable	Internal: 1		
3001065	Software	1		

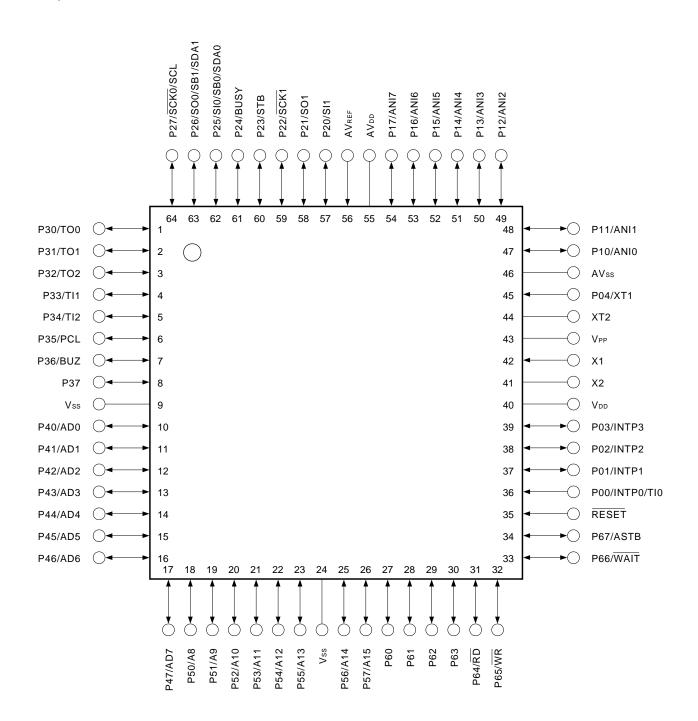
- **Notes 1.** The internal PROM and internal high-speed RAM capacities can be changed with the internal memory size switching register (IMS).
 - 2. The internal expansion RAM capacity can be changed with the internal expansion RAM size switching register (IXS).


FUNCTION OVERVIEW (2/2)

Item	Function
Test input	Internal: 1 External: 1
Supply voltage	V _{DD} = 1.8 to 5.5 V
Operating ambient temperature	$T_A = -40 \text{ to } +85^{\circ}\text{C}$
Package	64-pin plastic shrink DIP (750 mils) 64-pin ceramic shrink DIP (with window) (750 mils) 64-pin plastic QFP (14 × 14 mm) 64-pin ceramic WQFN (750 mils)

PIN CONFIGURATION (Top View)

- (1) Normal operating mode
 - 64-pin Plastic Shrink DIP (750 mils) μ PD78P018FYCW
 - 64-pin Ceramic Shrink DIP (with window) (750 mils) μ PD78P018FYDW



- Cautions 1. Connect the VPP pin directly to Vss.
 - 2. Connect the AVDD pin to VDD.
 - 3. Connect the AVss pin to Vss.

- \bullet 64-pin Plastic QFP (14 \times 14 mm)
 - μ PD78P018FYGC-AB8
- 64-pin Ceramic WQFN (14 × 14 mm)

 μ PD78P018FYKK-S

- Cautions 1. Connect the VPP pin directly to Vss.
 - 2. Connect the AVDD pin to VDD.
 - 3. Connect the AVss pin to Vss.

RESET: Reset A8 to A15: Address Bus RD: Read Strobe AD0 to AD7: Address/Data Bus Serial Bus SB0, SB1: ANI0 to ANI7: **Analog Input** SCK0, SCK1: Serial Clock ASTB: Address Strobe AVDD: SCL: Serial Clock **Analog Power Supply** SDA0, SDA1: Serial Data AVREF: Analog Reference Voltage SI0, SI1: Serial Input AVss: Analog Ground SO0, SO1: Serial Output BUSY: Busy STB: Strobe BUZ: **Buzzer Clock** TI0 to TI2: Timer Input Interrupt from Peripherals INTP0 to INTP3:

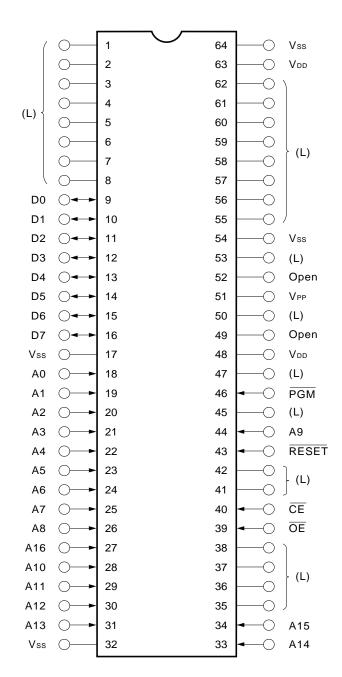
INTP0 to INTP3: Interrupt from Peripherals TI0 to TI2: Timer Input
P00 to P04: Port 0 TO0 to TO2: Timer Output
P10 to P17: Port 1 VDD: Power Supply

P20 to P27: Port 2 VPP: Programming Power Supply

 P30 to P37:
 Port 3
 Vss:
 Ground

 P40 to P47:
 Port 4
 WAIT:
 Wait

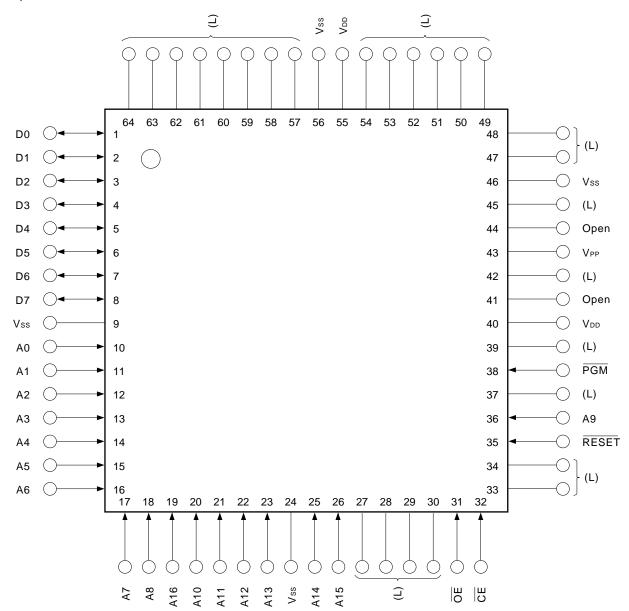
 P50 to P57:
 Port 5
 WR:
 Write St


P50 to P57: Port 5 WR: Write Strobe
P60 to P67: Port 6 X1, X2: Crystal (Main

P60 to P67: Port 6 X1, X2: Crystal (Main System Clock)
PCL: Programmable Clock XT1, XT2: Crystal (Subsystem Clock)

(2) PROM programming mode

- 64-pin Plastic Shrink DIP (750 mils) μ PD78P018FYCW
- 64-pin Ceramic Shrink DIP (with window) (750 mils) $\mu \text{PD78P018FYDW}$


Cautions 1. (L): Independently connect to Vss via a pull-down resistor.

Vss: Connect to GND.
 RESET: Set to low level.
 Open: Leave open.

- 64-pin Plastic QFP (14 × 14 mm)
 - μ PD78P018FYGC-AB8
- 64-pin Ceramic WQFN (14 × 14 mm)

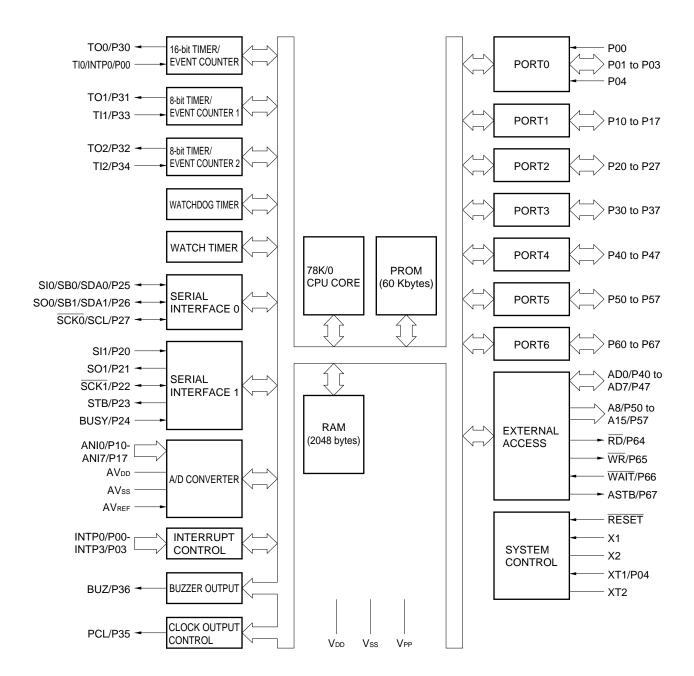
μPD78P018FYKK-S

Independently connect to Vss via a pull-down resistor. Cautions 1. (L):

> 2. Vss: Connect to GND. 3. RESET: Set to low level. 4. Open: Leave open.

> > Program

A0 to A16: Address RESET: Reset


CE: Chip Enable Power Supply VDD:

D0 to D7: Data Bus VPP: **Programming Power Supply**

OE: Output Enable Vss: Ground

PGM:

BLOCK DIAGRAM

CONTENTS

	1.	DIFFERENCES BETWEEN μ PD78P018FY AND MASK ROM VERSIONS	14
	2.	PIN FUNCTIONS	15
	2.1	Pins During Normal Operating Mode	15
	2.2	Pins During PROM Programming Mode	18
	2.3	Pin I/O Circuits and Recommended Connection of Unused Pins	19
	3.	INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)	21
	4.	INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)	22
	5.	PROM PROGRAMMING	23
	5.1	Operating Modes	23
	5.2	PROM Write Procedure	25
	5.3	PROM Read Procedure	29
	6.	PROGRAM ERASURE (FOR μ PD78P018FYDW, 78P018FYKK-S)	30
	7.	OPAQUE FILM ON ERASURE WINDOW (FOR μ PD78P018FYDW, 78P018FYKK-S)	30
	8.	ONE-TIME PROM VERSION SCREENING	30
	9.	ELECTRICAL SPECIFICATIONS	31
k	10.	CHARACTERISTIC CURVE (REFERENCE VALUE)	59
	11.	PACKAGE DRAWINGS	60
	12.	RECOMMENDED SOLDERING CONDITIONS	64
	AP	PENDIX A. DEVELOPMENT TOOLS	65
	۸D	DENDLY B. DELATED DOCUMENTS	70

1. DIFFERENCES BETWEEN THE μ PD78P018FY AND MASK ROM VERSIONS

The μ PD78P018FY is a single-chip microcontroller with an on-chip one-time PROM or EPROM that has program write, erase, and rewrite capability.

It is possible to make all the functions except for PROM specification and mask option of P60 to P63 pins, the same as those of mask ROM versions (μ PD78011FY, 78012FY, 78013FY, 78014FY, 78015FY, 78016FY, and 78018FY) by setting the internal memory size switching register (IMS) and the internal expansion RAM size switching register (IXS).

Differences between the μ PD78P018FY and mask ROM versions are shown in Table 1-1.

Table 1-1. Differences Between μ PD78P018FY and Mask ROM Version

Item	μPD78P018FY	Mask ROM Versions
Internal ROM type	One-time PROM or EPROM	Mask ROM
Internal ROM capacity	60 Kbytes	μPD78011FY: 8 Kbytes
		μPD78012FY: 16 Kbytes
		μPD78013FY: 24 Kbytes
		μPD78014FY: 32 Kbytes
		μPD78015FY: 40 Kbytes
		μPD78016FY: 48 Kbytes
		μPD78018FY: 60 Kbytes
Internal high-speed RAM capacity	1024 bytes	μPD78011FY: 512 bytes
		μPD78012FY: 512 bytes
		μPD78013FY: 1024 bytes
		μPD78014FY: 1024 bytes
		μPD78015FY: 1024 bytes
		μPD78016FY: 1024 bytes
		μPD78018FY: 1024 bytes
Internal expansion RAM capacity	1024 byte	μPD78011FY: No
		μPD78012FY: No
		μPD78013FY: No
		μPD78014FY: No
		μPD78015FY: 512 bytes
		μPD78016FY: 512 bytes
		μPD78018FY: 1024 bytes
Internal ROM, internal high-speed	Yes Note 1	No
RAM capacity changeable with internal		
memory size switching register (IMS)		
Internal expansion RAM capacity	Yes Note 2	No
changeable with internal expansion		
RAM size switching register (IXS)		
IC pin	No	Yes
V _{PP} pin	Yes	No
On-chip pull-up resistor mask option of	No	Yes
P60 to P63 pins		
Electrical specifications	See respective data sheet of individua	al products.
Recommended soldering conditions		

- **Notes 1.** The internal PROM capacity becomes 60 Kbytes and the internal high-speed RAM capacity becomes 1024 bytes by the RESET input.
 - 2. The internal expansion RAM capacity becomes 1024 bytes by the RESET input.

Caution There are differences in noise immunity and noise radiation between the PROM and mask ROM versions. When pre-producing an application set with the PROM version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM version.

2. PIN FUNCTIONS

2.1 Pins During Normal Operating Mode

(1) Port Pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function
P00	Input	Port 0	Input only	Input	INTP0/TI0
P01	Input/	5-bit input/	Input/output can be specified in 1-bit units.	Input	INTP1
P02	output	output port	When used as an input port, an on-chip pull- up resistor can be specified by means of		INTP2
P03]		software.		INTP3
P04 Note1	Input		Input only	Input	XT1
P10 to P17	Input/ output	Input/output can When used as a	Port 1 8-bit input/output port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software. Note 2		ANI0 to ANI7
P20	Input/	Port 2		Input	SI1
P21	output	8-bit input/outpu			SO1
P22	1		the specified in 1-bit units. In input port, an on-chip pull-up resistor can		SCK1
P23			means of software.		STB
P24					BUSY
P25					SI0/SB0/SDA0
P26					SO0/SB1/SDA1
P27					SCK0/SCL
P30	Input/	Port 3		Input	TO0
P31	output	8-bit input/output	ut port. n be specified in 1-bit units.		TO1
P32			an input port, an on-chip pull-up resistor can		TO2
P33		be specified by	means of software.		TI1
P34					TI2
P35	_				PCL
P36	_				BUZ
P37					_
P40 to P47	Input/ output	When used as a be specified by	It port. It be specified in 8-bit units. In input port, an on-chip pull-up resistor can means of software. KRIF) is set to 1 by falling edge detection.	Input	AD0 to AD7

- **Notes 1.** When using the P04/XT1 pin as an input port, set bit 6 (FRC) of the processor clock control register (PCC) to 1 (Do not use the on-chip feedback resistor of the subsystem clock oscillator).
 - 2. When using the P10/ANI0 to P17/ANI7 pins as the A/D converter analog input pins, set port 1 to the input mode. At this time, on-chip pull-up resistors are automatically disconnected.

(1) Port Pins (2/2)

Pin Name	I/O	Function		After Reset	Alternate Function
P50 to P57	Input/ output	Port 5 8-bit input/output port. LEDs can be driven directly. Input/output can be specified When used as an input port, a	an on-chip pull-up resistor	Input	A8 to A15
P60	Input/	Port 6	N-ch open-drain input/	Input	_
P61	output	8-bit input/output port.	output port.		
P62		Input/output can be specified in 1-bit units.	LEDs can be driven		
P63		iii i bit diiito.	directly.		
P64			When used as an input		RD
P65			port, an on-chip pull-up		WR
P66			resistor can be specified		WAIT
P67			by means of software.		ASTB

(2) Non-port Pins (1/2)

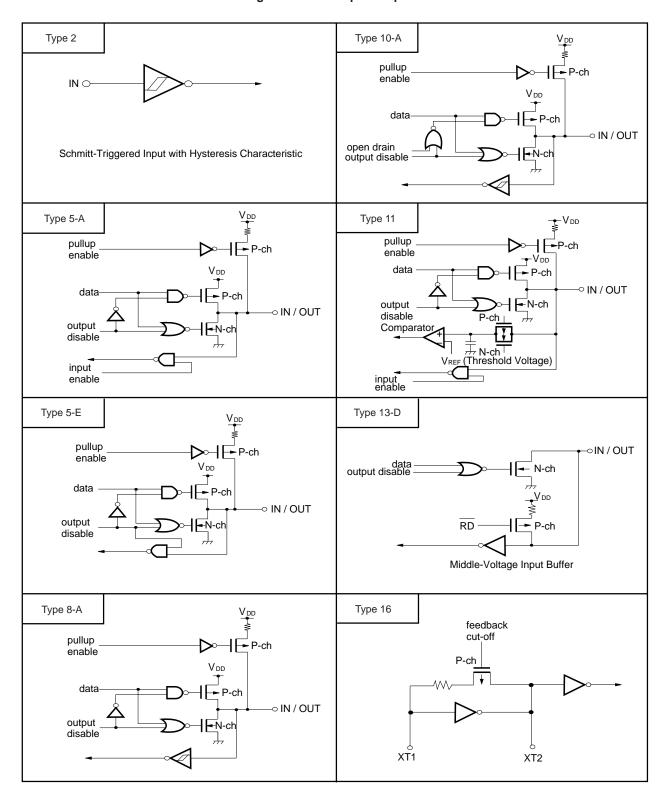
Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input for which the effective	Input	P00/TI0
INTP1		edge (rising edge, falling edge, or both rising edge and		P01
INTP2		falling edge) can be specified.		P02
INTP3		Falling edge detection external interrupt request input.		P03
SI0	Input	Serial interface serial data input.	Input	P25/SB0/SDA0
SI1				P20
SO0	Output	Serial interface serial data output.	Input	P26/SB1/SDA1
SO1				P21
SB0	Input/	Serial interface serial data input/output.	Input	P25/SI0/SDA0
SB1	output			P26/SO0/SDA1
SDA0				P25/SI0/SB0
SDA1				P26/SO0/SB1
SCK0	Input/	Serial interface serial clock input/output.	Input	P27/SCL
SCK1	output			P22
SCL				P27/SCK0
STB	Output	Serial interface automatic transmit/receive strobe output.	Input	P23
BUSY	Input	Serial interface automatic transmit/receive busy input.	Input	P24

(2) Non-port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
TIO	Input	External count clock input to 16-bit timer (TM0).	Input	P00/INTP0
TI1		External count clock input to 8-bit timer (TM1).		P33
TI2		External count clock input to 8-bit timer (TM2).		P34
TO0	Output	16-bit timer (TM0) output (shared as 14-bit PWM output).	Input	P30
TO1		8-bit timer (TM1) output.		P31
TO2		8-bit timer (TM2) output.		P32
PCL	Output	Clock output (for main system clock, subsystem clock trimming).	Input	P35
BUZ	Output	Buzzer output.		P36
AD0 to AD7	Input/ output	Lower address/data bus for expanding memory externally.	Input	P40 to P47
A8 to A15	Output	Higher address bus for expanding memory externally.	Input	P50 to P57
RD	Output	Strobe signal output for read from external memory.	Input	P64
WR		Strobe signal output for writing to external memory.		P65
WAIT	Input	Wait insertion at external memory access.	Input	P66
ASTB	Output	Strobe output that externally latches address information output to port 4 and port 5 to access external memory.	Input	P67
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
AVREF	Input	A/D converter reference voltage input.	_	_
AV _{DD}	_	A/D converter analog power supply. Connect to V _{DD} .	_	_
AVss	_	A/D converter ground potential. Connect to Vss.	_	_
RESET	Input	System reset input.	_	_
X1	Input	Connecting crystal resonator for main system clock oscillation.	_	_
X2	_		_	_
XT1	Input	Connecting crystal resonator for subsystem clock oscillation.	Input	P04
XT2	_		_	_
V _{DD}	_	Positive power supply.	_	_
VPP	_	High voltage applied during program write/verify. In normal operating mode, connect to Vss directly.	_	_
Vss	_	Ground potential.	<u> </u>	_

2.2 Pins During PROM Programming Mode

Pin	I/O	Function
RESET	Input	Sets PROM programming mode. When +5 V or +12.5 V is applied to the VPP and low level is applied to RESET pin, microcontroller is shifted to PROM programming mode.
V _{PP}	Input	Applies high voltage during PROM programming mode setting and program write/verify.
A0 to A16	Input	Address bus
D0 to D7	Input/ output	Data bus
CE	Input	PROM enable input/program pulse input.
ŌĒ	Input	Read strobe input to PROM.
PGM	Input	Program/program inhibit input in PROM programming mode.
V _{DD}	_	Positive power supply
Vss	_	Ground potential

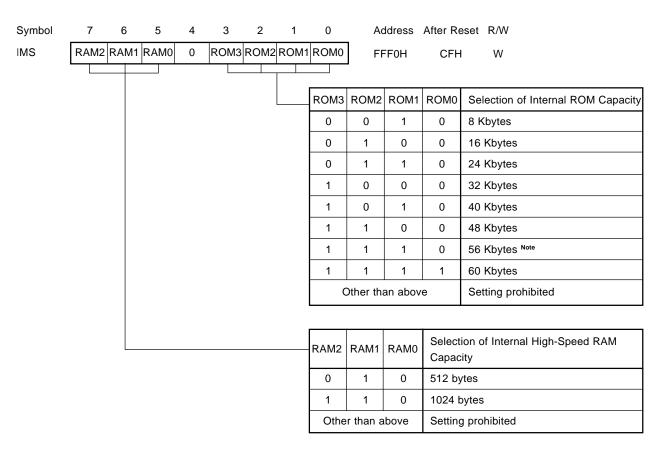

2.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 2-1. For the input/output circuit configuration of each type, see Figure 2-1.

Table 2-1. Types of Pin I/O Circuits

Pin Name	Input/output Circuit Type	I/O	Recommended Connection when Not Used
P00/INTP0/TI0	2	Input	Connect to Vss.
P01/INTP1	8-A	Input/output	Independently connect to Vss via a resistor.
P02/INTP2			
P03/INTP3			
P04/XT1	16	Input	Connect to V _{DD} .
P10/ANI0 to P17/ANI7	11	Input/output	Independently connect to V _{DD} or V _{SS} via a resistor.
P20/SI1	8-A		
P21/SO1	5-A		
P22/SCK1	8-A		
P23/STB	5-A		
P24/BUSY	8-A		
P25/SI0/SB0/SDA0	10-A		
P26/SO0/SB1/SDA1			
P27/SCK0/SCL			
P30/TO0	5-A		
P31/TO1			
P32/TO2			
P33/TI1	8-A		
P34/TI2			
P35/PCL	5-A		
P36/BUZ			
P37			
P40/AD0 to P47/AD7	5-E		Independently connect to VDD via a resistor.
P50/A8 to P57/A15	5-A		Independently connect to V _{DD} or V _{SS} via a resistor.
P60 to P63	13-D		Independently connect to VDD via a resistor.
P64/RD	5-A		Independently connect to VDD or VSS via a resistor.
P65/WR			
P66/WAIT			
P67/ASTB			
RESET	2	Input	_
XT2	16		Leave open.
AVREF	_		Connect to Vss.
AVDD			Connect to V _{DD} .
AVss			Connect to Vss.
VPP	7		Connect directly to Vss.

Figure 2-1. Pin Input/Output Circuits


3. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

This register is used to disable the use of part of the internal memory by software. By setting this register (IMS), it is possible to get the same memory map as that of the mask ROM versions with a different internal memory (ROM, RAM).

IMS is set with an 8-bit memory manipulate instruction.

RESET input sets IMS to CFH.

Figure 3-1. Internal Memory Size Switching Register Format

Note If external device expansion functions are to be employed for the μ PD78P018FY, set the size of the internal ROM to 56 Kbytes or below using the internal memory size switching register (IMS).

Table 3-1 shows the setting values of IMS which make the memory map the same as that of the mask ROM versions.

Table 3-1. Internal Memory Size Switching Register Setting Values

Target Mask ROM Versions	IMS Setting Value			
μPD78011FY	42H			
μPD78012FY	44H			
μPD78013FY	C6H			
μPD78014FY	C8H			
μPD78015FY	CAH			
μPD78016FY	ССН			
μPD78018FY	CFH			

4. INTERNAL EXPANSION RAM SIZE SWITCHING REGISTER (IXS)

This register is used to disable the use of part of the internal expansion RAM capacity by software. By setting this register (IXS), it is possible to get the same memory map as that of the mask ROM versions with a different internal expansion RAM.

IXS is set with an 8-bit memory manipulate instruction.

RESET input sets IXS to 0AH.

Figure 4-1. Internal Expansion RAM Size Switching Register Format

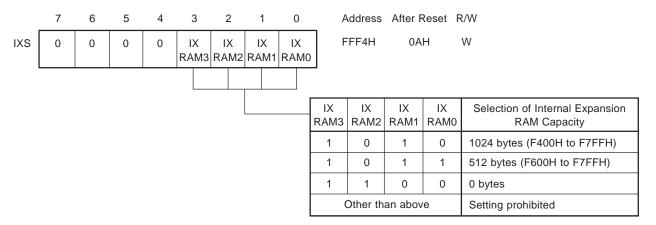


Table 4-1 shows the setting values of IXS which make the memory map the same as that of the mask ROM versions.

Table 4-1. Internal Expansion RAM Size Switching Register Setting Values

Target Mask ROM Versions	IXS Setting Value		
μPD78011FY	0CH Note		
μPD78012FY			
μPD78013FY			
μPD78014FY			
μPD78015FY	0BH		
μPD78016FY			
μPD78018FY	0AH		

Note Even if a program for the μ PD78P018FY in which "MOV IXS, #0CH" is written is executed in the μ PD78011FY, 78012FY, 78013FY, and 78014FY, the operations are not affected.

5. PROM PROGRAMMING

The μ PD78P018FY has an internal 60-Kbyte PROM as a program memory. For programming, set the PROM programming mode by setting the V_{PP} and $\overline{\text{RESET}}$ pins. For unused pin connection, refer to "**PIN CONFIGURATION** (**Top View**) (2) **PROM programming mode**."

Caution When writing in a program, use locations 0000H-EFFFH (specify the last address as EFFFH). You cannot write in using a PROM programmer that cannot specify the addresses to write.

5.1 Operating Modes

When +5 V or +12.5 V is applied to the VPP pin and the low-level signal is applied to the $\overline{\text{RESET}}$ pin, the PROM programming mode is set. This mode will become the operating mode as shown in Table 5-1 when the $\overline{\text{CE}}$, $\overline{\text{OE}}$, and $\overline{\text{PGM}}$ pins are set as shown.

Further, when the read mode is set, it is possible to read the contents of the PROM.

Table 5-1. Operating Modes of PROM Programming

Pin Operating Mode	RESET	Vpp	Vpb	CE	ŌĒ	PGM	D0 to D7
Page data latch	L	+12.5 V	+6.5 V	Н	L	Н	Data input
Page write				Н	Н	L	High-impedance
Byte write				L	Н	L	Data input
Program verify				L	L	Н	Data output
Program inhibit				×	Н	Н	High-impedance
				×	L	L	
Read		+5 V	+5 V	L	L	н	Data output
Output disable				L	Н	×	High-impedance
Standby				Н	×	×	High-impedance

 \times : L or H

(1) Read mode

Read mode is set if $\overline{CE} = L$, $\overline{OE} = L$ is set.

(2) Output disable mode

Data output becomes high-impedance, and is in the output disable mode, if $\overline{OE} = H$ is set.

Therefore, it allows data to be read from any device by controlling the \overline{OE} pin, if multiple μ PD78P018FYs are connected to the data bus.

(3) Standby mode

Standby mode is set if $\overline{CE} = H$ is set.

In this mode, data outputs become high-impedance irrespective of the $\overline{\text{OE}}$ status.

(4) Page data latch mode

Page data latch mode is set if $\overline{CE} = H$, $\overline{PGM} = H$, $\overline{OE} = L$ are set at the beginning of page write mode.

In this mode, 1 page 4-byte data is latched in an internal address/data latch circuit.

(5) Page write mode

After 1 page 4 bytes of addresses and data are latched in the page data latch mode, a page write is executed by applying a 0.1-ms program pulse (active low) to the \overline{PGM} pin with $\overline{CE} = H$, $\overline{OE} = H$. Then, program verification can be performed, if $\overline{CE} = L$, $\overline{OE} = L$ are set.

If programming is not performed by a one-time program pulse, X ($X \le 10$) write and verification operations should be executed repeatedly.

(6) Byte write mode

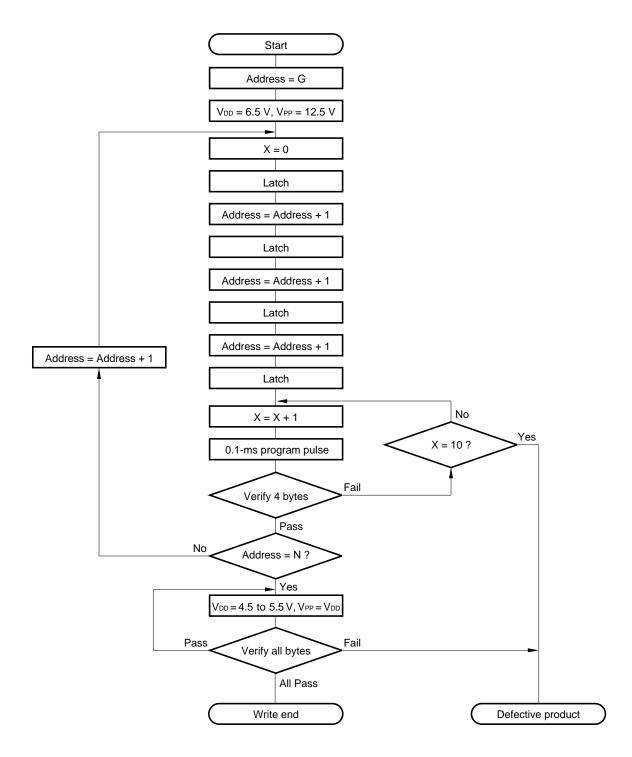
Byte write is executed when a 0.1-ms program pulse (active low) is applied to the \overline{PGM} pin with $\overline{CE} = L$, $\overline{OE} = H$. Then, program verification can be performed if $\overline{OE} = L$ is set.

If programming is not performed by a one-time program pulse, X ($X \le 10$) write and verification operations should be executed repeatedly.

(7) Program verify mode

Program verify mode is set if $\overline{CE} = L$, $\overline{PGM} = H$, $\overline{OE} = L$ are set. In this mode, check if a write operation is performed correctly, after the write.

(8) Program inhibit mode


Program inhibit mode is used when the $\overline{\text{OE}}$ pin, VPP pin, and D0 to D7 pins of multiple μ PD78P018FYs are connected in parallel and a write is performed to one of those devices.

When a write operation is performed, the page write mode or byte write mode described above is used. At this time, a write is not performed to a device which has the \overline{PGM} pin driven high.

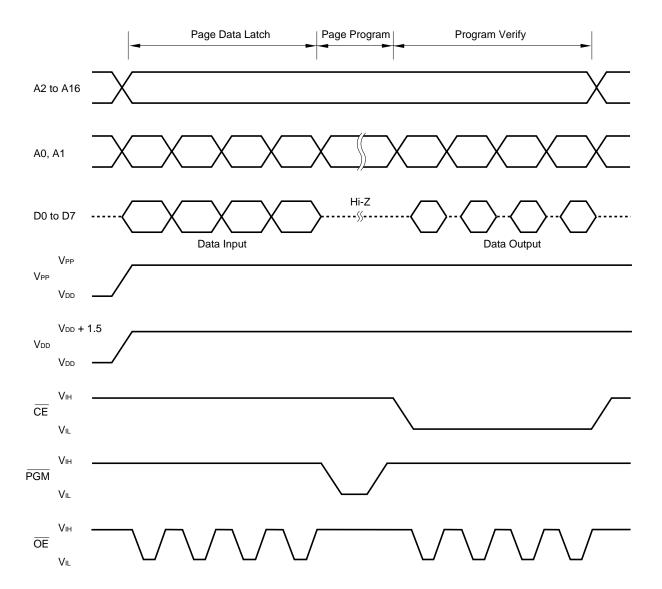
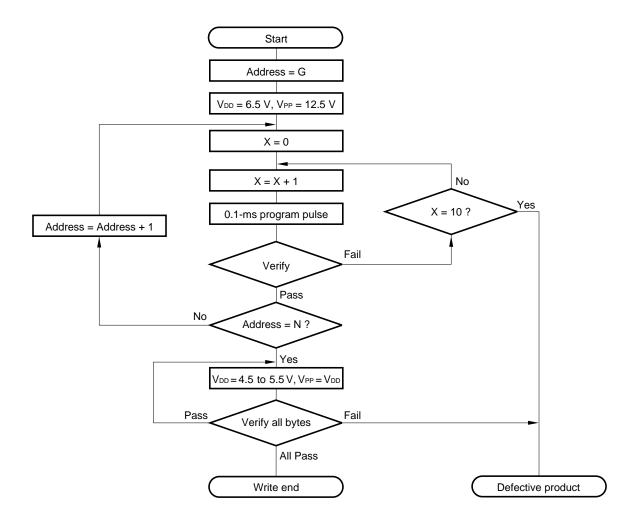
5.2 PROM Write Procedure

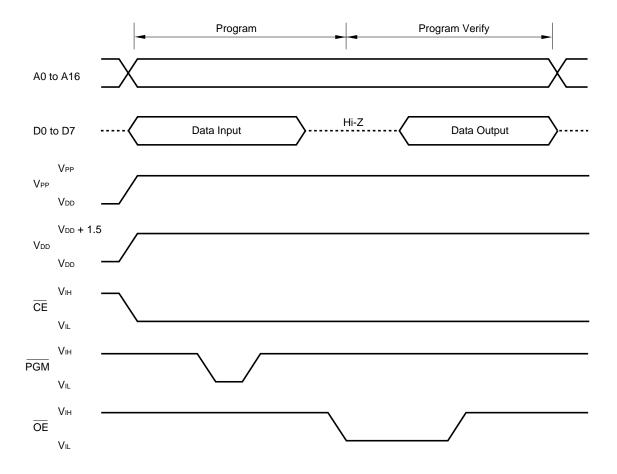
Figure 5-1. Page Program Mode Flow Chart

G = Start address

N = Program last address

Figure 5-2. Page Program Mode Timing

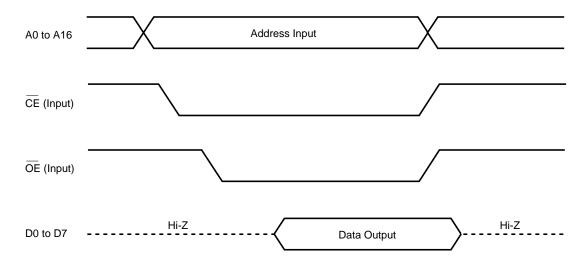

Figure 5-3. Byte Program Mode Flow Chart

G = Start address

N = Program last address

Figure 5-4. Byte Program Mode Timing

- Cautions 1. VDD should be applied before VPP and cut after VPP.
 - 2. VPP must not exceed +13.5 V including overshoot.
 - 3. Removing and reinserting while +12.5 V is applied to VPP may adversely affect reliability.


5.3 PROM Read Procedure

The contents of PROM are readable to the external data bus (D0 to D7) according to the read procedure shown below.

- (1) Fix the RESET pin at low level, supply +5 V to the VPP pin, and connect all other unused pins as shown in "PIN CONFIGURATION (Top View) (2) PROM programming mode".
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input address of read data into the A0 to A16 pins.
- (4) Read mode
- (5) Output data to D0 to D7 pins.

The timings of the above steps (2) to (5) are shown in Figure 5-5.

Figure 5-5. PROM Read Timings

6. PROGRAM ERASURE (FOR μ PD78P018FYDW, 78P018FYKK-S)

The μ PD78P018FYDW, 78P018FYKK-S are capable of erasing (FFH) the contents of data written in a program memory and rewriting.

When erasing the contents of data, irradiate light having a wavelength of less than about 400 nm to the erasure window. Normally, irradiate ultraviolet rays of 254 nm wavelength. Volume of irradiation required to completely erase the contents of data is as follows:

- UV intensity × erasing time: 30 W s/cm² or more
- Erasing time: 40 min. or longer (When a UV lamp of 12 mW/cm² is used. However, a longer time may
 be needed because of deterioration in performance of the UV lamp, contamination of
 the erasure window, etc.)

When erasing the contents of data, set up the UV lamp within 2.5 cm from the erasing window. Further, if a filter is provided for a UV lamp, irradiate the ultraviolet rays after removing the filter.

7. OPAQUE FILM ON ERASURE WINDOW (FOR μ PD78P018FYDW, 78P018FYKK-S)

To protect from unintentional erasure by rays other than that of the lamp for erasing EPROM contents, or to protect internal circuit other than EPROM from misoperating by rays, cover the erasure window with an opaque film when EPROM contents erasure is not performed.

8. ONE-TIME PROM VERSION SCREENING

The one-time PROM versions (μ PD78P018FYCW, 78P018FYGC-AB8) cannot be tested completely by NEC before it is shipped, because of its structure. It is recommended to perform screening to verify PROM after writing necessary data and performing high-temperature storage under the condition below.

Storage Temperature	Storage Time			
125°C	24 hours			

NEC provides for a fee one-time PROM writing, marking, screening, and verify service for products designated as "QTOP Microcontrollers." For details, contact an NEC sales representative.

9. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Test Condi	itions		Ratings	Unit
Supply voltage	V _{DD}				-0.3 to +7.0	V
	VPP				-0.3 to +13.5	V
	AVDD				-0.3 to V _{DD} + 0.3	V
	AVREF				-0.3 to V _{DD} + 0.3	V
	AVss				-0.3 to +0.3	V
Input voltage		P00 to P04, P10 to P17, P2	20 to P	27, P30 to P37,		
	VII	P40 to P47, P50 to P57, P6	64 to F	P67, X1, X2,	-0.3 to $V_{DD} + 0.3$	V
		XT2, RESET				
	V ₁₂	P60 to P63 O	pen-d	rain	-0.3 to +16	V
	Vıз	A9	ROM	nming mode	-0.3 to +13.5	V
Output voltage	Vo	P		9	-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10 to P17 A	Analog input pin		AVss - 0.3 to AVREF + 0.3	V
Output		1 pin		-10	mA	
current, high	Іон	Total for P10 to P17, P20 to P27, P30 to P37			-15	mA
		Total for P01 to P03, P40 to P	247, P5	0 to P57, P60 to P67	-15	mA
Output		1 pin		Peak value	30	mA
current, low				rms value	15	mA
		Total for P40 to P47, P50 to P55		Peak value	100	mA
				rms value	70	mA
	. Nata	Total for P01 to P03, P56, P57,		Peak value	100	mA
	_{OL} Note	P60 to P67		rms value	70	mA
		Total for P01 to P03,		Peak value	50	mA
		P64 to P67		rms value	20	mA
		Total for P10 to P17, P20 to P27,		Peak value	50	mA
		P30 to P37		rms value	20	mA
Operating ambient temperature	TA				-40 to +85	°C
Storage temperature	T _{stg}				-65 to +150	°C

Note The rms value should be calculated as follows: [rms value] = [Peak value] $\times \sqrt{\text{Duty}}$

Caution Product quality may suffer if the absolute maximum rating is exceed even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Capacitance (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	Те	MIN.	TYP.	MAX.	Unit	
Input capacitance	Cin	f = 1 MHz Unmeasured pins returned to 0 V.				15	pF
I/O capacitance		P01 to P03, P10 to P17,					
		f = 1 MHz P20 to P27, P30 to P37,				15	pF
	Сю	Unmeasured pins P40 to P47, P50 to P57,					
		returned to 0 V. P64 to P67					
			P60 to P63			20	pF

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port functions.

Main System Clock Oscillator Characteristics (T_A = −40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit	
Ceramic	X2 X1 V _{PP}	Oscillation	2.7 V ≤ V _{DD} ≤ 5.5 V	1		10	MHz	
resonator		frequency (fx) Note 1	1.8 V ≤ V _{DD} < 2.7 V	1		5	IVII IZ	
	C2 =C1	Oscillation stabilization time Note 2	After V _{DD} reaches oscillator voltage range MIN.			4	ms	
Crystal resonator	X2 X1 V _{PP}	Oscillation	2.7 V ≤ V _{DD} ≤ 5.5 V	1		10	MHz	
resonator		frequency (fx) Note 1	1.8 V ≤ V _{DD} < 2.7 V	1		5		
		Oscillation	V _{DD} = 4.5 to 5.5 V			10		
	<u></u>	stabilization time Note 2				30	ms	
External clock	X2 X1	X1 input frequency (fx) Note 1		1.0		10.0	MHz	
	μPD74HCU04	X1 input high-/low-level width (txH, txL)		45		500	ns	

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after reset or STOP mode release.
- Cautions 1. When using the main system clock oscillator, wire the area enclosed by the broken line in the above figures as follows to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - · Always keep the ground point of the oscillator capacitor to the same potential as Vss.
 - Do not ground the capacitor to a ground pattern in which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program.

Subsystem Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	V _{PP} XT2 XT1	Oscillation frequency (f _{XT}) Note 1		32	32.768	35	kHz
	C4= C3=	Oscillation	V _{DD} = 4.5 to 5.5 V		1.2	2	s
	<u>-</u> '	stabilization time Note 2				10	3
External clock	XT2 XT1	XT1 input frequency (f _{XT}) Note 1		32		100	kHz
	μPD74HCU04 Δ	XT1 input high-/low-level width (txth, txtl)		5		15	μs

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after VDD reaches oscillator voltage MIN.
- Cautions 1. When using the subsystem clock oscillator, wire the area enclosed by the broken line in the above figures as follows to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - · Always keep the ground point of the oscillator capacitor to the same potential as Vss.
 - Do not ground the capacitor to a ground pattern in which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current, and is more prone to malfunction due to noise than the main system clock oscillator.

Particular care is therefore required with the wiring method when the subsystem clock is used.

RECOMMENDED OSCILLATOR CONSTANTS

Main system clock: Ceramic resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Manufacturer	Name	Frequency	Recommended Oscillator Constants		Oscillation Voltage Range		Remarks	
		(MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)		
TDK	CCR4.0MC3	4.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, surface mounting type	
	FCR4.0MC5	4.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, insertion type	
	CCR4.19MC3	4.19	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, surface mounting type	
	FCR4.19MC5	4.19	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, insertion type	
	CCR5.00MC3	5.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, surface mounting type	
	FCR5.00MC5	5.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, insertion type	
	CCR8.00MC	8.00	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, surface mounting type	
	FCR8.00MC5	8.00	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, insertion type	
	CCR8.38MC	8.38	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, surface mounting type	
	FCR8.38MC5	8.38	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, insertion type	
	CCR10.00MC	10.00	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, surface mounting type	
	FCR10.00MC5	10.00	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, insertion type	
Murata Mfg.	CSA4.00MG	4.00	30	30	1.8	5.5	Insertion type	
Co., Ltd.	CST4.00MGW	4.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, insertion type	
	CSA4.19MG	4.19	30	30	1.8	5.5	Insertion type	
	CST4.19MGW	4.19	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, insertion type	
	CSA5.00MG	5.00	30	30	1.8	5.5	Insertion type	
	CST5.00MGW	5.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, insertion type	
	CSA8.00MTZ	8.00	30	30	2.7	5.5	Insertion type	
	CST8.00MTW	8.00	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, insertion type	
	CSA8.38MTZ	8.38	30	30	2.7	5.5	Insertion type	
	CST8.38MTW	8.38	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, insertion type	
	CSA10.00MTZ	10.00	30	30	2.7	5.5	Insertion type	
	CST10.00MTW	10.00	On-Chip	On-Chip	2.7	5.5	On-chip capacitor, insertion type	

Caution The oscillator constants and oscillation voltage range indicate conditions for stable oscillation, but do not guarantee oscillation frequency accuracy. If oscillation frequency accuracy is required for actual circuits, it is necessary to adjust the oscillation frequency of the oscillator in the actual circuit. Please contact directly the manufacturer of the resonator to be used.

Main system clock: Ceramic resonator ($T_A = -20 \text{ to } +80^{\circ}\text{C}$)

Manufacturer	Name	Frequency		mended Constants	Oscil Voltage	lation Range	Remarks
		(MHz)	C1 (pF)	C2 (pF)	MIN. (V)	MAX. (V)	
Kyocera	PBRC4.00A	4.00	33	33	1.8	5.5	Surface mounting type
Corporation	PBRC4.00B	4.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, surface mounting type
	KBR-4.00MSA	4.00	33	33	1.8	5.5	Insertion type
	KBR-4.00MKS	4.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, insertion type
	PBRC5.00A	5.00	33	33	1.8	5.5	Surface mounting type
	PBRC5.00B	5.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, surface mounting type
	KBR-5.00MSA	5.00	33	33	1.8	5.5	Insertion type
	KBR-5.00MKS	5.00	On-Chip	On-Chip	1.8	5.5	On-chip capacitor, insertion type
	KBR-8M	8.00	33	33	2.7	5.5	Insertion type
	KBR-10M	10.00	33	33	2.7	5.5	Insertion type

Caution The oscillator constants and oscillation voltage range indicate conditions for stable oscillation. The oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details, please contact directly the manufacturer of the resonator you will use.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test C	onditions	MIN.	TYP.	MAX.	Unit
Input voltage,	V _{IH1}	P10 to P17, P21, P23, P30 to P32,	V _{DD} = 2.7 to 5.5 V	0.7V _{DD}		V _{DD}	V
high		P35 to P37, P40 to P47,		0.8V _{DD}		V _{DD}	V
		P50 to P57, P64 to P67		0.0488		V DD	· ·
	V _{IH2}	P00 to P03, P20, P22, P24 to P27,	V _{DD} = 2.7 to 5.5 V	0.8V _{DD}		V _{DD}	V
		P33, P34, RESET		0.85V _{DD}		V _{DD}	V
	V _{IH3}	P60 to P63	V _{DD} = 2.7 to 5.5 V	0.7V _{DD}		15	V
		(N-ch open-drain)		0.8V _{DD}		15	V
	V _{IH4}	X1, X2	V _{DD} = 2.7 to 5.5 V	V _{DD} - 0.5		V _{DD}	V
				V _{DD} - 0.2		V _{DD}	V
	V _{IH5}	XT1/P04, XT2	4.5 V ≤ V _{DD} ≤ 5.5 V	0.8V _{DD}		V _{DD}	V
			2.7 V ≤ V _{DD} < 4.5 V	0.9V _{DD}		V _{DD}	V
			$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$ Note	0.9V _{DD}		V _{DD}	V
Input voltage,	V _{IL1}	P10 to P17, P21, P23, P30 to P32,	V _{DD} = 2.7 to 5.5 V	0		0.3V _{DD}	V
low		P35 to P37, P40 to P47, P50 to P57, P64 to P67		0		0.2V _{DD}	V
	V _{IL2}	P00 to P03, P20, P22, P24 to P27,	V _{DD} = 2.7 to 5.5 V	0		0.2V _{DD}	V
		P33, P34, RESET		0		0.15V _{DD}	V
	V _{IL3}	P60 to P63	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		0.3V _{DD}	V
			2.7 V ≤ V _{DD} < 4.5 V	0		0.2V _{DD}	V
				0		0.1V _{DD}	V
	VIL4	X1, X2	V _{DD} = 2.7 to 5.5 V	0		0.4	V
				0		0.2	V
	VIL5	XT1/P04, XT2	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		0.2V _{DD}	V
			2.7 V ≤ V _{DD} < 4.5 V	0		0.1V _{DD}	V
			$1.8 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$ Note	0		0.1V _{DD}	V
Output	Vон1	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, I_{OH} = -1 \text{ mA}$		V _{DD} - 1.0			V
voltage, high		Іон = -100 μΑ		V _{DD} - 0.5			V
Output	V _{OL1}	P50 to P57, P60 to P63	V _{DD} = 4.5 to 5.5 V,		0.4	2.0	V
voltage, low			IoL = 15 mA				
		P01 to P03, P10 to P17, P20 to P27,	V _{DD} = 4.5 to 5.5 V,			0.4	V
		P30 to P37, P40 to P47, P64 to P67	loL = 1.6 mA				
	V _{OL2}	SB0, SB1, SCK0	V _{DD} = 4.5 to 5.5 V, open-			0.2V _{DD}	V
		drain pulled-up (R = 1 k Ω)					
	Vol3	$IoL = 400 \mu A$				0.5	V

Note When using XT1/P04 as P04, input the inverse phase of P04 should be input to XT2 using an inverter.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Test Cor	nditions	MIN.	TYP.	MAX.	Unit
Input leakage	Ішн1	VIN = VDD	P00 to P03, P10 to P17,			3	μΑ
current, high			P20 to P27, P30 to P37,				
			P40 to P47, P50 to P57,				
			P64 to P67, RESET				
	I _{LIH2}		X1, X2, XT1/P04, XT2			20	μΑ
	Ішнз	VIN = 15 V	P60 to P63			80	μΑ
Input leakage	ILIL1	Vin = 0 V	P00 to P03, P10 to P17,			-3	μ A
current, low			P20 to P27, P30 to P37,				
			P40 to P47, P50 to P57,				
			P64 to P67, RESET				
	I _{LIL2}		X1, X2, XT1/P04, XT2			-20	μΑ
	ILIL3		P60 to P63			_3 Note	μΑ
Output leakage current, high	Ісон	Vout = Vdd				3	μΑ
Output leakage current, low	ILOL	Vout = 0 V			-3	μΑ	
Software	R	V _{IN} = 0 V, P01 to P03, P10 to P17	15	40	90	kΩ	
pull-up resistor		P40 to P47, P50 to P57, P64 to P67					

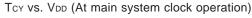
Note For pins P60 to P63, a low-level input leak current of $-200~\mu\text{A}$ (MAX.) flows only during the 3 clocks (no-wait time) after an instruction has been executed to read out port 6 (P6) or port mode register 6 (PM6). Outside the period of 3 clocks following execution a read-out instruction, the current is $-3~\mu\text{A}$ (MAX.).

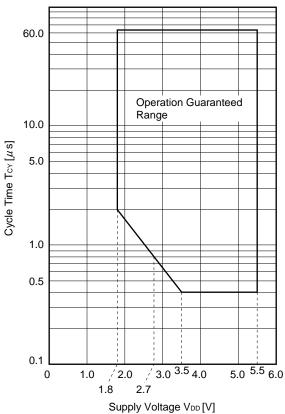
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Test Cond	itions	MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	10.00-MHz crystal	V _{DD} = 5.0 V ± 10 % Note 2		12.0	24.0	mA
current Note 1		oscillation operation mode	$V_{DD} = 3.0 \text{ V} \pm 10 \% \text{ Note 3}$		1.4	2.8	mA
	I _{DD2}	10.00-MHz crystal	$V_{DD} = 5.0 \text{ V} \pm 10 \% \text{ Note 2}$		4.0	8.0	mA
		oscillation HALT mode	$V_{DD} = 3.0 \text{ V} \pm 10 \% \text{ Note 3}$		1.4	2.8	mA
	IDD3	32.768-kHz crystal	V _{DD} = 5.0 V ± 10 %		150	300	μΑ
		oscillation operation mode Note 4	$V_{DD} = 3.0 \text{ V} \pm 10 \%$		100	200	μΑ
			V _{DD} = 2.0 V ± 10 %		60	120	μΑ
	I _{DD4}	32.768-kHz crystal	V _{DD} = 5.0 V ± 10 %		25	50	μΑ
		oscillation HALT mode Note 4	V _{DD} = 3.0 V ± 10 %		5	15	μΑ
			V _{DD} = 2.0 V ± 10 %		2.5	10	μΑ
	I _{DD5}	XT1 = V _{DD}	V _{DD} = 5.0 V ± 10 %		2.0	30	μΑ
		STOP mode when using feedback	V _{DD} = 3.0 V ± 10 %		1.0	10	μΑ
		resistor	V _{DD} = 2.0 V ± 10 %		0.5	10	μΑ
	I _{DD6}	XT1 = V _{DD}	V _{DD} = 5.0 V ± 10 %		0.1	30	μΑ
		STOP mode when not using	V _{DD} = 3.0 V ± 10 %		0.05	10	μΑ
		feedback resistor	V _{DD} = 2.0 V ± 10 %		0.05	10	μΑ

- **Notes 1.** Refers to the current flowing to the V_{DD} pin. The current flowing to the on-chip pull-up resistors, ports, and A/D converter is not included.
 - 2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00H)
 - 3. When operating at low-speed mode (when PCC is set to 04H)
 - 4. When main system clock operation stopped.


AC Characteristics


(1) Basic Operation (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test Cond	itions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	Operating with main system	3.5 V ≤ V _{DD} ≤ 5.5 V	0.4		64	μs
(Min. instruction		clock	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.5 \text{ V}$	0.8		64	μs
execution time)			$1.8 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	2.0		64	μs
		Operating with subsystem clock		40 Note 1	122	125	μs
TI0 input	t тіно,	$3.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$		2/f _{sam} +0.1 Note 2			μs
high-/low-level	t _{TILO}	2.7 V ≤ V _{DD} < 3.5 V		2/f _{sam} +0.2 Note 2			μs
width		1.8 V ≤ V _{DD} < 2.7 V		2/f _{sam} +0.5 Note 2			μs
TI1, TI2 input	f _{TI1}	V _{DD} = 4.5 to 5.5 V		0		4	MHz
frequency				0		275	kHz
TI1, TI2 input	t тін1,	V _{DD} = 4.5 to 5.5 V		100			ns
high-/low-level width	t⊤ı∟ı			1.8			μs
Interrupt	tinth,	INTP0	3.5 V ≤ V _{DD} ≤ 5.5 V	2/f _{sam} +0.1 Note 2			μs
request input	tintl		2.7 V ≤ V _{DD} < 3.5 V	2/f _{sam} +0.2 Note 2			μs
high-/low-level			$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	2/f _{sam} +0.5 Note 2			μs
width		INTP1 to INTP3, KR0 to KR7	V _{DD} = 2.7 to 5.5 V	10			μs
				20			μs
RESET low-	trsl	V _{DD} = 2.7 to 5.5 V		10			μs
level width				20			μs

Notes 1. Value when an external clock is used. This value is 114 μ s (MIN.) when a crystal resonator is used.

2. In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register (SCS), selection of f_{sam} is possible between $f_x/2^{N+1}$, $f_x/64$, and $f_x/128$ (when N= 0 to 4).

(2) Read/Write Operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		0.5tcY		ns
Address setup time	tads		0.5tcy-30		ns
Address hold time	tadh		50		ns
Data input time from address	t _{ADD1}			(2.5+2n)tcy-50	ns
	tADD2			(3+2n)tcy-100	ns
Data input time from RD↓	t _{RDD1}			(1+2n)tcy-25	ns
	tRDD2			(2.5+2n)tcy-100	ns
Read data hold time	t RDH		0		ns
RD low-level width	trdL1		(1.5+2n)tcy-20		ns
	tRDL2		(2.5+2n)tcy-20		ns
$\overline{\text{WAIT}} \downarrow \text{ input time from } \overline{\text{RD}} \downarrow$	trdwt1			0.5tcy	ns
	trdwt2			1.5tcy	ns
$\overline{\mathrm{WAIT}} \!\!\downarrow \mathrm{input\ time\ from\ } \overline{\mathrm{WR}} \!\!\downarrow$	twrwt			0.5tcy	ns
WAIT low-level width	tw⊤∟		(0.5+2n)tcy+10	(2+2n)tcy	ns
Write data setup time	twos		100		ns
Write data hold time	twoн	Load resistance ≥ 5 kΩ	20		ns
WR low-level width	twrL		(2.5+2n)tcy-20		ns
RD↓ delay time from ASTB↓	tastrd		0.5tcy-30		ns
WR	tastwr		1.5tcy-30		ns
ASTB↑ delay time from RD↑ in external fetch	trdast		tcy-10	tcy+40	ns
Address hold time from RD↑ in external fetch	trdadh		tcy	tcy+50	ns
Write data output time from RD↑	trdwd	V _{DD} = 4.5 to 5.5 V	0.5tcy+5	0.5tcy+30	ns
			0.5tcy+15	0.5tcy+90	ns
Write data output time from WR↓	twrwd	V _{DD} = 4.5 to 5.5 V	5	30	ns
			15	90	ns
Address hold time from WR↑	twradh	V _{DD} = 4.5 to 5.5 V	tcy	tcy+60	ns
			tcy	tcy+100	ns
RD↑ delay time from WAIT↑	twrd		0.5tcy	2.5tcy+80	ns
WR↑ delay time from WAIT↑	twrwr		0.5tcy	2.5tcy+80	ns

Remarks 1. tcy = Tcy/4

2. n indicates the number of waits.

(3) Serial Interface ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

(a) Serial Interface Channel 0

(i) 3-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy1	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK0 high-/low-level	tkH1,	V _{DD} = 4.5 to 5.5 V	tkcy1/2-50			ns
width	t _{KL1}		tксү1/2-100			ns
SI0 setup time	tsik1	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK0 ↑)		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI0 hold time	t _{KSI1}		400			ns
(from SCK0↑)						
SO0 output delay time from SCK0↓	tkso1	C = 100 pF Note			300	ns

Note C is the load capacitance of SCK0 and SO0 output lines.

(ii) 3-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Test 0	Conditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy2	4.5 V ≤ V _{DD} ≤ 5	.5 V	800			ns
		2.7 V ≤ V _{DD} < 4	.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2	.7 V	3200			ns
				4800			ns
SCK0 high-/low-level	tĸн2,	4.5 V ≤ V _{DD} ≤ 5	.5 V	400			ns
width	t _{KL2}	2.7 V ≤ V _{DD} < 4	.5 V	800			ns
		2.0 V ≤ V _{DD} < 2	.7 V	1600			ns
				2400			ns
SI0 setup time	tsik2	V _{DD} = 2.0 to 5.5	5 V	100			ns
(to SCK0 ↑)				150			ns
SI0 hold time	tksi2			400			ns
(from SCK0↑)							
SO0 output delay time	tkso2	C = 100 pF Note	V _{DD} = 2.0 to 5.5 V			300	ns
from SCK0 ↓						500	ns
SCK0 rise/fall time	t _{R2} ,	When external	device			160	ns
	t _{F2}	expansion fund	tion is used				
		When external	When 16-bit timer			700	ns
		device expansion	output function is				
		function is not	used				
		used	When 16-bit timer			1000	ns
			output function is				
			not used				

Note C is the load capacitance of SO0 output line.

(iii) 2-wire serial I/O mode (SCKO... Internal clock output)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tксүз	$R = 1 k\Omega$,	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1600			ns
		C = 100 pF Note	$2.0 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	3200			ns
				4800			ns
SCK0 high-level width	tкнз		$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	tксүз/2-160			ns
				tксүз/2-190			ns
SCK0 low-level width	tкьз		V _{DD} = 4.5 to 5.5 V	tксүз/2-50			ns
				tксүз/2-100			ns
SB0, SB1 setup time	tsik3		4.5 V ≤ V _{DD} ≤ 5.5 V	300			ns
(to SCK0↑)			$2.7 \text{ V} \le \text{V}_{DD} < 4.5 \text{ V}$	350			ns
			2.0 V ≤ V _{DD} < 2.7 V	400			ns
				500			ns
SB0, SB1 hold time	t _{KSI3}			600			ns
(from SCK0↑)							
SB0, SB1 output delay	tkso3			0		300	ns
time from SCK0↓							

Note R and C are the load resistance and load capacitance of the SCKO, SBO, and SB1 output lines.

(iv) 2-wire serial I/O mode (SCK0... External clock input)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK0 cycle time	tkcy4	2.7 V ≤ V _{DD} ≤ 5.5	V	1600			ns
		2.0 V ≤ V _{DD} < 2.7	' V	3200			ns
				4800			ns
SCK0 high-level width	t кн4	2.7 V ≤ V _{DD} ≤ 5.5	V	650			ns
		2.0 V ≤ V _{DD} < 2.7 V		1300			ns
				2100			ns
SCK0 low-level width	t _{KL4}	2.7 V ≤ V _{DD} ≤ 5.5 V		800			ns
		2.0 V ≤ V _{DD} < 2.7	' V	1600			ns
				2400			ns
SB0, SB1 setup time	tsik4	$V_{DD} = 2.0 \text{ to } 5.5$	V	100			ns
(to SCK0↑)				150			ns
SB0, SB1 hold time	tksi4			tkcy4/2			ns
(from SCK0↑)							
SB0, SB1 output delay	tkso4	$R = 1 k\Omega$,	4.5 V ≤ V _{DD} ≤ 5.5 V	0		300	ns
time from SCK0↓		C = 100 pF Note	2.0 V ≤ V _{DD} < 4.5 V	0		500	ns
				0		800	ns
SCK0 rise/fall time	t _{R4} ,	When external d	evice			160	ns
	t _{F4}	expansion functi	on is used				
		When external	When 16-bit timer			700	ns
		device expansion	output function is				
		function is not	used				
		used	When 16-bit timer			1000	ns
			output function is				
			not used				

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.

(v) I2C bus mode (SCL... Internal clock output)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tkcy5	$R = 1 k\Omega$,	2.7 V ≤ V _{DD} ≤ 5.5 V	10			μs
		C = 100 pF Note	2.0 V ≤ V _{DD} < 2.7 V	20			μs
				30			μs
SCL high-level width	tкн5		V _{DD} = 2.7 to 5.5 V	tkcy5-160			ns
				tксү5—190			ns
SCL low-level width	t _{KL5}		V _{DD} = 4.5 to 5.5 V	tkcy5-50			ns
				tkcy5-100			ns
SDA0, SDA1 setup time	tsik5		2.7 V ≤ V _{DD} ≤ 5.5 V	200			ns
(to SCL↑)			2.0 V ≤ V _{DD} < 2.7 V	300			ns
				400			ns
SDA0, SDA1 hold time	tksi5			0			ns
(from SCL↓)							
SDA0, SDA1 output	t ks05		$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		300	ns
delay time from SCL↓			2.0 V ≤ V _{DD} < 4.5 V	0		500	ns
				0		600	ns
SDA0, SDA1↓ from SCL↑	tĸsв			200			ns
or SDA0, SDA1↑ from SCL↑							
SCL↓ from SDA0, SDA1↓	tsвк		V _{DD} = 2.0 to 5.5 V	400			ns
				500			ns
SDA0, SDA1 high-level width	tsвн			500			ns

Note R and C are the load resistance and load capacitance of the SCL, SDA0, and SDA1 output lines.

(vi) I²C bus mode (SCL... External clock input)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCL cycle time	tkcy6			1000			ns
SCL high-/low-level	t кн6,	V _{DD} = 2.0 to 5.5	V	400			ns
width	t _{KL6}			600			ns
SDA0, SDA1 setup time	tsik6	V _{DD} = 2.0 to 5.5	V	200			ns
(to SCL↑)				300			ns
SDA0, SDA1 hold time (from SCL↓)	tksi6			0			ns
SDA0, SDA1 output	tkso6	$R = 1 k\Omega$,	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		300	ns
delay time from SCL↓		C = 100 pF Note	2.0 V ≤ V _{DD} < 4.5 V	0		500	ns
				0		600	ns
SDA0, SDA1↓ from SCL↑ or SDA0, SDA1↑ from SCL↑	tкsв			200			ns
SCL↓ from SDA0, SDA1↓	t sbk	V _{DD} = 2.0 to 5.5	V	400			ns
				500			ns
SDA0, SDA1 high-level	tsвн	V _{DD} = 2.0 to 5.5	V	500			ns
width				800			ns
SCL rise/fall time	t _{R6} ,	When external d	evice			160	ns
	t _{F6}	expansion functi	on is used				
		When external	When 16-bit timer			700	ns
		device expansion	output function is				
		function is not	used				
		used	When 16-bit timer			1000	ns
			output function is				
			not used				

Note R and C are the load resistance and load capacitance of the SDA0 and SDA1 output lines.

(b) Serial Interface Channel 1

(i) 3-wire serial I/O mode (SCK1... Internal clock output)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	t ксү7	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK1 high-/low-level	tкн7,	V _{DD} = 4.5 to 5.5 V	tксү7/2-50			ns
width	t _{KL7}		tксүт/2-100			ns
SI1 setup time	tsık7	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK1 ↑)		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI1 hold time	tksi7		400			ns
(from SCK1↑)						
SO1 output delay time	tkso7	C = 100 pF Note			300	ns
from SCK1↓						

Note C is the load capacitance of $\overline{SCK1}$ and SO1 output lines.

(ii) 3-wire serial I/O mode (SCK1... External clock input)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy8	4.5 V ≤ V _{DD} ≤ 5.5	5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5	5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7	' V	3200			ns
				4800			ns
SCK1 high-/low-level	tкнв,	4.5 V ≤ V _{DD} ≤ 5.5	5 V	400			ns
width	t _{KL8}	2.7 V ≤ V _{DD} < 4.5	5 V	800			ns
		2.0 V ≤ V _{DD} < 2.7	2.0 V ≤ V _{DD} < 2.7 V				ns
				2400			ns
SI1 setup time	tsik8	V _{DD} = 2.0 to 5.5	V	100			ns
(to SCK1 ↑)							ns
SI1 hold time	t _{KSI8}			400			ns
(from SCK1↑)							
SO1 output delay time	tkso8	C = 100 pF Note	V _{DD} = 2.0 to 5.5 V			300	ns
from $\overline{\text{SCK1}} \downarrow$						500	ns
SCK1 rise/fall time	t _{R8} ,	When external d	evice			160	ns
	t _{F8}	expansion function	on is used				
		When external	When 16-bit timer			700	ns
		device expansion	output function is				
		function is not	used				
		used	When 16-bit timer			1000	ns
			output function is				
			not used				

Note C is the load capacitance of the SO1 output line.

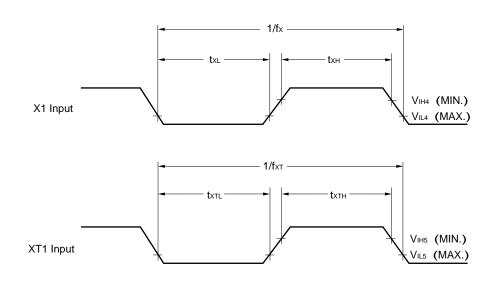
(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... Internal clock output)

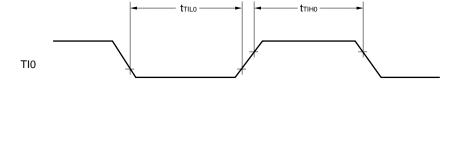
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcy9	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7 V	3200			ns
			4800			ns
SCK1 high-/low-level	tкнэ,	V _{DD} = 4.5 to 5.5 V	tксү9/2-50			ns
width	t _{KL9}		tксү9/2-100			ns
SI1 setup time	tsik9	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(to SCK1↑)		2.7 V ≤ V _{DD} < 4.5 V	150			ns
		2.0 V ≤ V _{DD} < 2.7 V	300			ns
			400			ns
SI1 hold time	tksi9		400			ns
(from SCK1↑)						
SO1 output delay time	t KSO9	C = 100 pF Note			300	ns
from SCK1↓						
STB↑ from SCK1↑	tsbd		tксү9/2-100		tксү9/2+100	ns
Strobe signal	tssw	2.7 V ≤ V _{DD} ≤ 5.5 V	tксү9-30		tксүэ+30	ns
high-level width		2.0 V ≤ V _{DD} < 2.7 V	tксү9-60		tксү9+60	ns
			tксү9-90		tксүэ+90	ns
Busy signal setup time	t BYS		100			ns
(to busy signal						
detection timing)						
Busy signal hold time	tвүн	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
(from busy signal		2.7 V ≤ V _{DD} < 4.5 V	150			ns
detection timing)		2.0 V ≤ V _{DD} < 2.7 V	200			ns
			300			ns
SCK1↓ from busy	tsps				21ксү9	ns
inactive						

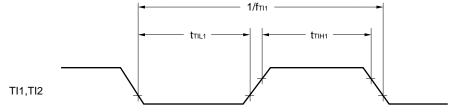
Note $\,$ C is the load capacitance of the $\overline{\text{SCK1}}$ and SO1 output lines.

(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... External clock input)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkCY10	4.5 V ≤ V _{DD} ≤ 5.5	5 V	800			ns
		2.7 V ≤ V _{DD} < 4.5	5 V	1600			ns
		2.0 V ≤ V _{DD} < 2.7	7 V	3200			ns
				4800			ns
SCK1 high-/low-level	t кн10,	4.5 V ≤ V _{DD} ≤ 5.5	5 V	400			ns
width	t _{KL10}	2.7 V ≤ V _{DD} < 4.5	5 V	800			ns
		2.0 V ≤ V _{DD} < 2.7	7 V	1600			ns
				2400			ns
SI1 setup time	tsik10	V _{DD} = 2.0 to 5.5 \	V	100			ns
(to SCK1↑)				150			ns
SI1 hold time	tksi10			400			ns
(from SCK1↑)							
SO1 output delay time	t KSO10	C = 100 pF Note	V _{DD} = 2.0 to 5.5 V			300	ns
from SCK1↓						500	ns
SCK1 rise/fall time	tR10, tF10	When external d	evice expansion			160	ns
		function is used	unction is used				
		When external d	evice expansion			1000	ns
		function is not us	sed				

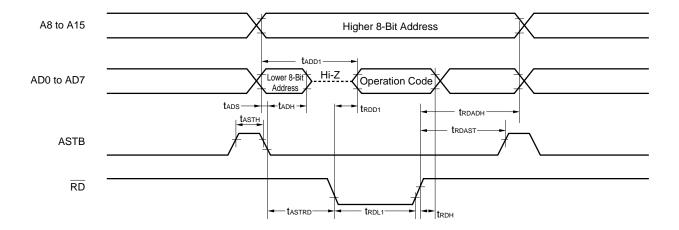

Note C is the load capacitance of the SO1 output line.

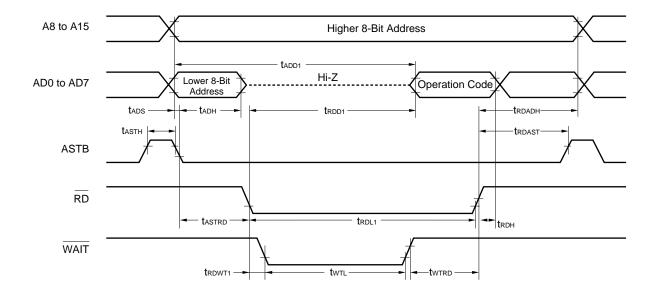

AC Timing Test Point (Excluding X1, XT1 Input)



Clock Timing

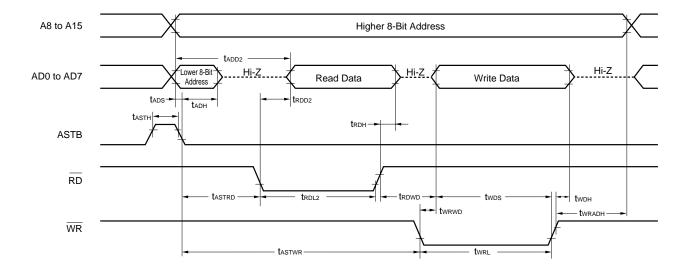
TI Timing



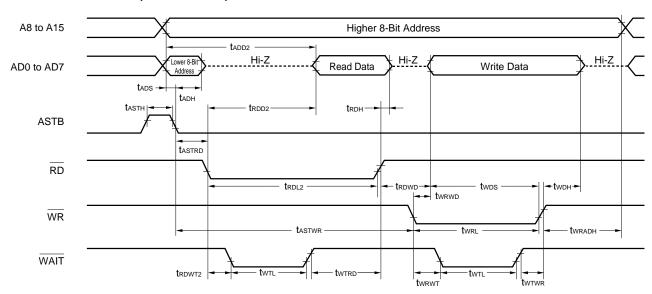


Read/Write Operation

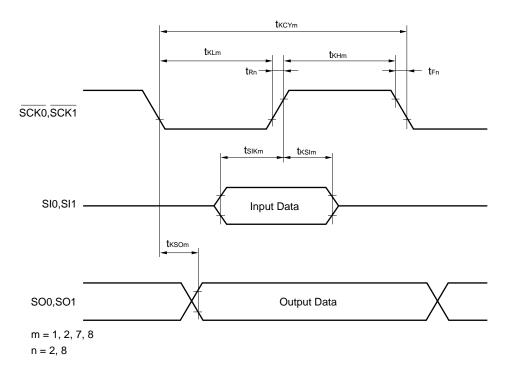
External fetch (No wait):

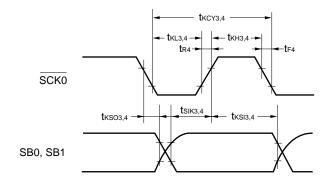


External fetch (Wait insertion):

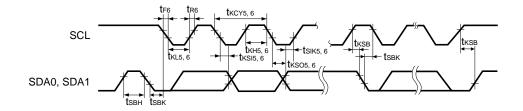


External data access (No wait):

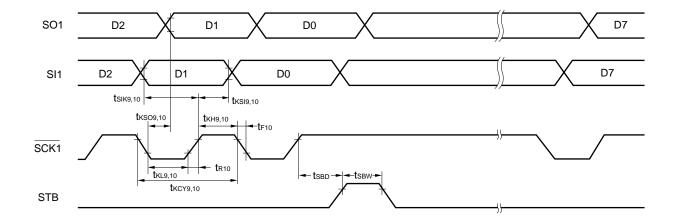

External data access (Wait insertion):



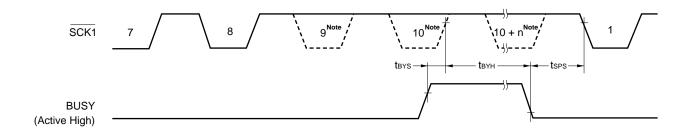
Serial Transfer Timing


3-wire serial I/O mode:

2-wire serial I/O mode:



I²C bus mode:



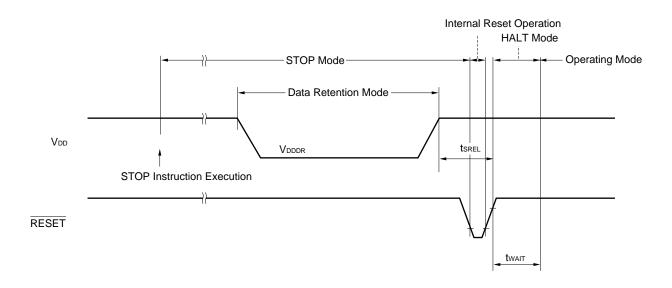
3-wire serial I/O mode with automatic transmit/receive function:

3-wire serial I/O mode with automatic transmit/receive function (busy processing):

Note The signal is not actually driven low here; it is shown as such to indicate the timing.

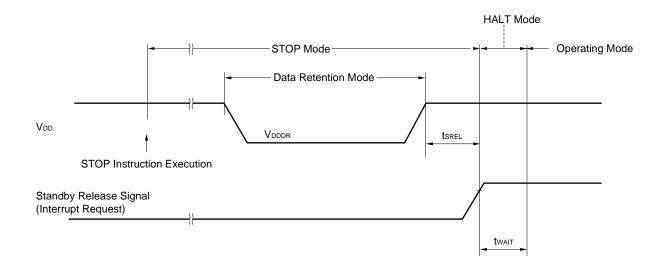
A/D Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, AVDD = VDD = 2.2 to 5.5 V, AVss = Vss = 0 V)

	Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
	Resolution			8	8	8	bit
	Overall error Note		2.7 V ≤ AV _{REF} ≤ AV _{DD}			0.6	%
			2.2 V ≤ AV _{REF} < 2.7 V			1.4	%
	Conversion time	tconv	2.7 V ≤ AV _{REF} ≤ AV _{DD}	19.1		200	μs
*			2.2 V ≤ AV _{REF} < 2.7 V	38.2		200	μs
	Sampling time	tsamp		24/fx			μs
	Analog input voltage	VIAN		AVss		AVREF	V
	Reference voltage	AVREF		2.2		AVDD	V
	AV _{REF} resistance	Rairef		4	14		kΩ

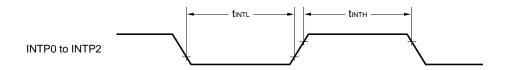

Note Overall error excluding quantization error (±1/2 LSB). It is indicated as a ratio to the full-scale value.

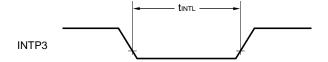
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to +85°C)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply	VDDDR		1.8		5.5	V
voltage						
Data retention supply	IDDDR	VDDDR = 1.8 V		0.1	10	μΑ
current		Subsystem clock stops and feed-				
		back resistor disconnected				
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁸ /fx		ms
wait time		Release by interrupt request		Note		ms

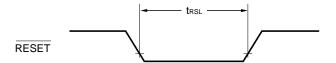

Note In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS), selection of 2^{13} /fx and 2^{15} /fx to 2^{18} /fx is possible.

Data Retention Timing (STOP Mode Release by RESET)





Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)



Interrupt Input Request Timing

RESET Input Timing

PROM PROGRAMMING CHARACTERISTICS

DC Characteristics

(1) PROM Write Mode (Ta = 25 \pm 5°C, VdD = 6.5 \pm 0.25 V, VpP = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	ViH	VIH		0.7V _{DD}		V _{DD}	V
Input voltage, low	VIL	Vıl		0		0.3V _{DD}	V
Output voltage, high	Vон	Vон	Iон = −1 mA	V _{DD} - 1.0			V
Output voltage, low	Vol	Vol	IoL = 1.6 mA			0.4	V
Input leakage current	lu	lu	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
VPP supply voltage	V _{PP}	V _{PP}		12.2	12.5	12.8	V
V _{DD} supply voltage	V _{DD}	Vcc		6.25	6.5	6.75	V
VPP supply current	I PP	I PP	PGM = VIL			50	mA
V _{DD} supply current	IDD	Icc				50	mA

Note Corresponding μ PD27C1001A symbol

(2) PROM Read Mode (TA = 25 \pm 5°C, VdD = 5.0 \pm 0.5 V, VPP = VdD \pm 0.6 V)

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	ViH	ViH		0.7V _{DD}		V _{DD}	V
Input voltage, low	VIL	VIL		0		0.3Vpp	V
Output voltage, high	Vон1	Vон1	lон = −1 mA	V _{DD} - 1.0			V
	V _{OH2}	V _{OH2}	Іон = -100 μΑ	V _{DD} - 0.5			V
Output voltage, low	Vol	Vol	IoL = 1.6 mA			0.4	٧
Input leakage current	lu	lu	$0 \le V_{IN} \le V_{DD}$	-10		+10	μΑ
Output leakage current	ILO	ILO	$0 \le V_{OUT} \le V_{DD}, \overline{OE} = V_{IH}$	-10		+10	μΑ
V _{PP} supply voltage	VPP	V _{PP}		V _{DD} - 0.6	V _{DD}	V _{DD} + 0.6	V
V _{DD} supply voltage	V _{DD}	Vcc		4.5	5.0	5.5	>
VPP supply current	I PP	I PP	VPP = VDD			100	μΑ
V _{DD} supply current	loo	ICCA1	$\overline{CE} = ViL, Vin = Vih$			50	mA

Note Corresponding μ PD27C1001A symbol

AC Characteristics

(1) PROM Write Mode

(a) Page program mode (TA = 25 \pm 5°C, VDD = 6.5 \pm 0.25 V, VPP = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{OE}\!\!\downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
CE setup time (to OE↓)	tces	tces		2			μs
Input data setup time (to OE↓)	tos	tos		2			μs
Address hold time (from OE↑)	tан	tан		2			μs
	tahl	t ahl		2			μs
	tahv	tahv		0			μs
Input data hold time (from OE↑)	tон	tон		2			μs
Data output float delay time from OE↑	t DF	tor		0		250	ns
V _{PP} setup time (to $\overline{\text{OE}} \downarrow$)	tvps	tvps		1.0			ms
V _{DD} setup time (to $\overline{\text{OE}} \downarrow$)	tvps	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
Valid data delay time from OE ↓	toe	toe				1	μs
OE pulse width during data latching	tLW	tuw		1			μs
PGM setup time	t PGMS	t PGMS		2			μs
CE hold time	tсен	t CEH		2			μs
OE hold time	tоен	tоен		2			μs

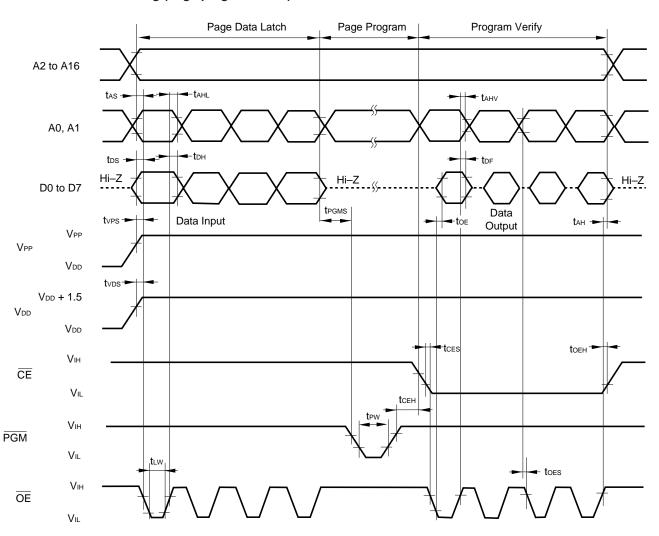
Note Corresponding μ PD27C1001A symbol

(b) Byte program mode (T_A = 25 \pm 5°C, V_{DD} = 6.5 \pm 0.25 V, V_{PP} = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to PGM ↓)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
CE setup time (to PGM↓)	tces	tces		2			μs
Input data setup time (to PGM ↓)	tos	tos		2			μs
Address hold time (from OE↑)	tан	tан		2			μs
Input data hold time (from PGM↑)	tон	tон		2			μs
Data output float delay time from OE↑	t DF	t DF		0		250	ns
V _{PP} setup time (to $\overline{\text{PGM}} \downarrow$)	tvps	tvps		1.0			ms
V _{DD} setup time (to $\overline{\text{PGM}} \downarrow$)	tvds	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
Valid data delay time from OE↓	toe	toe				1	μs
OE hold time	tоен	_		2			μs

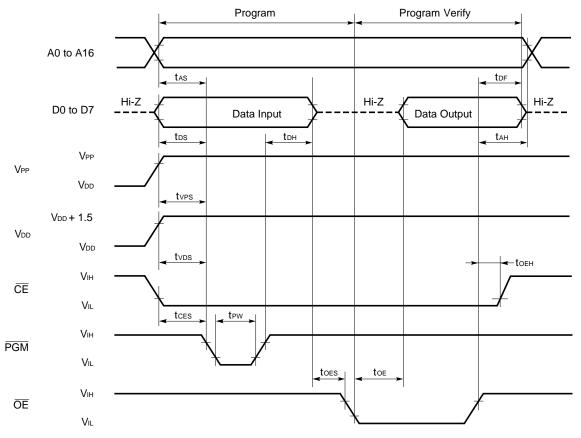
Note Corresponding μ PD27C1001A symbol

(2) PROM Read Mode (TA = 25 ± 5 °C, VDD = 5.0 ± 0.5 V, VPP = VDD ± 0.6 V)

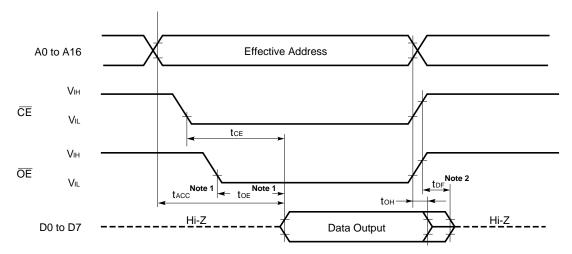

Parameter	Symbol	Symbol Note	Test Conditions	MIN.	TYP.	MAX.	Unit
Data output time from address	tacc	tacc	$\overline{CE} = \overline{OE} = V_{IL}$			800	ns
Data output delay time from $\overline{CE} \downarrow$	tce	tce	OE = VIL			800	ns
Data output delay time from $\overline{OE} \downarrow$	toe	toe	CE = VIL			200	ns
Data output float delay time from OE ↑	tor	tor	CE = VIL	0		60	ns
Data hold time from address	tон	tон	CE = OE = VIL	0			ns

Note Corresponding μ PD27C1001A symbol

(3) PROM Programming Mode Setting (TA = 25°C, Vss = 0 V)

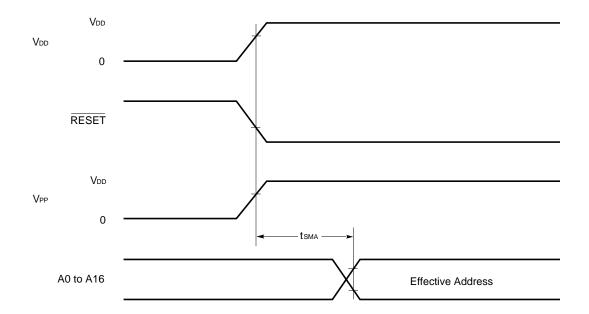

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
PROM programming	tsма		10			μs
mode setup time						

PROM Write Mode Timing (Page program mode)

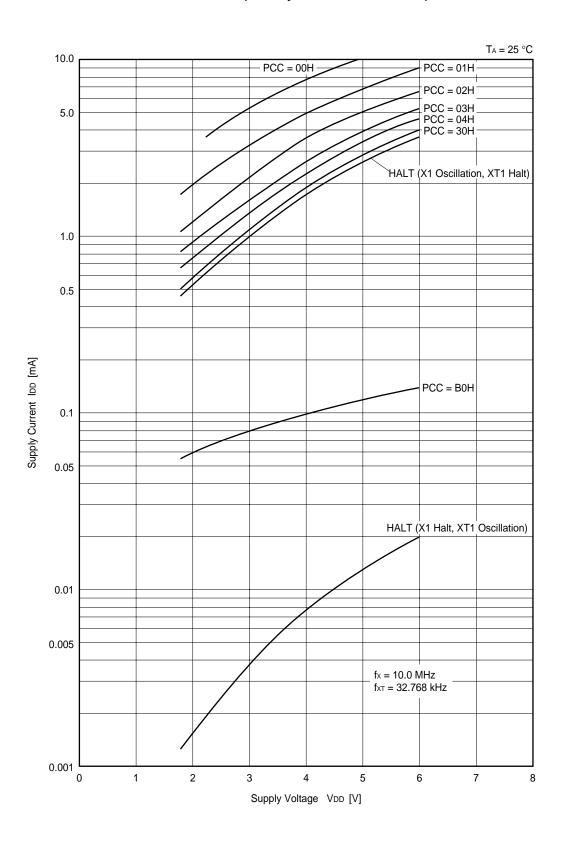


PROM Write Mode Timing (Byte program mode)

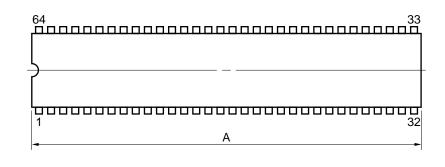
- Cautions 1. VDD must be applied before VPP and cut off after VPP.
 - 2. VPP must not exceed +13.5 V including overshoot.
 - 3. Removing and reinserting while +12.5 V is applied to VPP may adversely affect reliability.

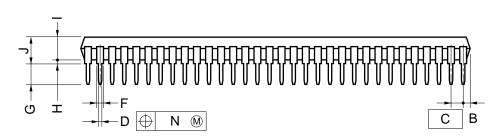

PROM Read Mode Timing

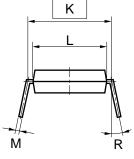
- **Notes 1.** When reading within the tacc range, the \overline{OE} input delay time from the \overline{CE} fall time must be maximum of tacc toe.
 - 2. DF is the time from the point at which either \overline{OE} or \overline{CE} (whichever is first) reaches V_{IH} .


PROM Programming Mode Setting Timing

* 8. CHARACTERISTIC CURVE (REFERENCE VALUE)


IDD vs. VDD (Main System Clock: 10.0 MHz)



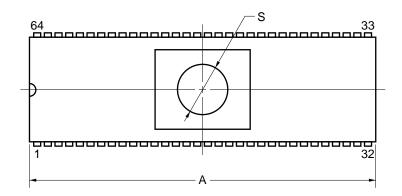


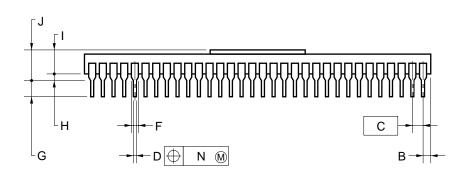
11. PACKAGE DRAWINGS

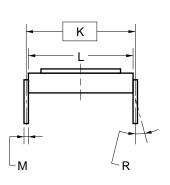
64 PIN PLASTIC SHRINK DIP (750 mils)

NOTE

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	0.25 ^{+0.10} _{-0.05}	0.010+0.004
N	0.17	0.007
R	0~15°	0~15°

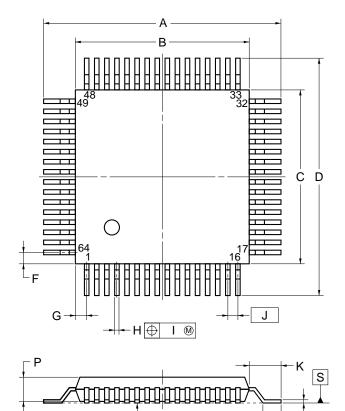

P64C-70-750A,C-1


Remark The dimensions and materials of ES (Engineering Sample) versions are the same as those of mass-produced versions.

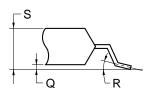
64 PIN CERAMIC SHRINK DIP (750 mils)

NOTES

- 1) Each lead centerline is located within 0.25 mm (0.010 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.310 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.46±0.05	0.018±0.002
F	0.8 MIN.	0.031 MIN.
G	3.5±0.3	0.138±0.012
Н	1.0 MIN.	0.039 MIN.
I	3.0	0.118
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	18.8	0.740
М	0.25±0.05	$0.010^{+0.002}_{-0.003}$
N	0.25	0.010
R	0~15°	0~15°
S	φ8.89	φ0.350

P64DW-70-750A-1



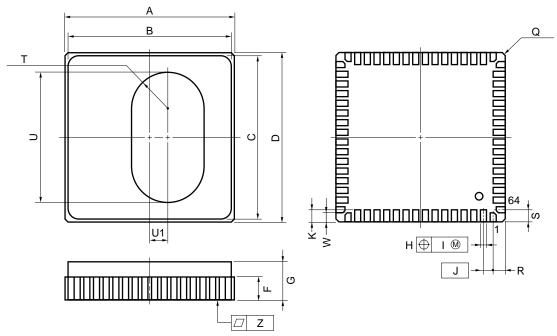
Μ

64 PIN PLASTIC QFP (14x14)

detail of lead end

NOTE

- 1. Controlling dimension millimeter.
- 2. Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS	INCHES
Α	17.6±0.4	0.693±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
Н	$0.37^{+0.08}_{-0.07}$	0.015+0.003
- 1	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.8±0.2	0.071±0.008
L	0.8±0.2	0.031+0.009
М	0.17 ^{+0.08} -0.07	0.007+0.003
N	0.10	0.004
Р	2.55±0.1	0.100±0.004
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	2.85 MAX.	0.113 MAX.

P64GC-80-AB8-4

Remark The dimensions and materials of ES (Engineering Sample) versions are the same as those of mass-produced versions.

64 PIN CERAMIC WQFN

NOTE

Each lead centerline is located within 0.08 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

X64KW-80A1

ITEM	MILLIMETERS	INCHES
Α	14.0±0.18	0.551±0.007
В	13.4	0.528
С	13.4	0.528
D	14.0±0.18	0.551±0.007
F	1.84	0.072
G	3.56 MAX.	0.141 MAX.
Н	0.51±0.1	0.02±0.004
-	0.08	0.003
J	0.8 (T.P.)	0.031 (T.P.)
K	1.0±0.15	$0.039^{+0.007}_{-0.006}$
Q	C 0.3	C 0.012
R	1.0	0.039
S	1.0	0.039
Т	R 3.0	R 0.118
U	10.8	0.425
U1	1.4	0.055
W	0.75±0.15	$0.03^{+0.006}_{-0.007}$
Z	0.10	0.004

12. RECOMMENDED SOLDERING CONDITIONS

The μ PD78P018FY should be soldered and mounted under the following recommended conditions.

For the recommended soldering conditions, refer to the document "Semiconductor Device Mounting Technology Manual" (C10535E).

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 12-1. Surface Mounting Type Soldering Conditions

 μ PD78P018FYGC-AB8: 64-pin Plastic QFP (14 × 14 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds Max. (at 210°C or higher), Count: Three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 seconds Max. (at 200°C or higher), Count: Three times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C, Time: 10 seconds Max., Count: Once, Preheating temperature: 120°C Max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C Max., Time: 3 seconds Max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

Table 12-2. Insertion Type Soldering Conditions

 μ PD78P018FYCW: 64-pin Plastic Shrink DIP (750 mils)

 μ PD78P018FYDW: 64-pin Ceramic Shrink DIP (with window) (750 mils)

Soldering Method	Soldering Conditions
Wave soldering (pin only)	Solder temperature: 260°C Max., Time: 10 seconds Max.
Partial heating	Pin temperature: 300°C Max., Time: 3 seconds Max. (per pin)

Caution Apply wave soldering only to the pins and be careful not to bring solder into direct contact with the package.

* APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78P018FY. Read **(5) Cautions on using developing tools** for reference.

(1) Language Processing Software

RA78K/0	Assembler package common to 78K/0 Series
CC78K/0	C compiler package common to 78K/0 Series
DF78014	Device file common to μ PD78018F Subseries
CC78K/0-L	C compiler library source file common to 78K/0 Series

(2) PROM Writing Tools

PG-1500	PROM programmer
PA-78P018CW PA-78P018GC PA-78P018KK-S	Programmer adapter connected to PG-1500
PG-1500 controller	PG-1500 control program

(3) Debugging Tool

• When using in-circuit emulator IE-78K0-NS

IE-78K0-NS	In-circuit emulator common to 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-70000-98-IF-C	Interface adapter required when using PC-9800 series as host machine (excluding notebook PCs, C bus supported)
IE-70000-CD-IF-A	PC card and interface cable required when using notebook PC of PC-9800 series as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT™ compatible as host machine (ISA bus supported)
IE-70000-PCI-IF	Adapter when using PC that incorporates PCI bus as host machine
IE-78018-NS-EM1	Emulation board common to μ PD78018F Subseries
NP-64CW	Emulation probe for 64-pin plastic shrink DIP (CW type)
NP-64GC	Emulation probe for 64-pin plastic QFP (GC-AB8 type)
EV-9200GC-64	Socket to be mounted on a target system board made for 64-pin plastic QFP (GC-AB8 type)
ID78K0-NS	Integrated debugger for IE-78K0-NS
SM78K0	System simulator common to 78K/0 Series
DF78014	Device file common to μPD78018F Subseries

• When using in-circuit emulator IE-78001-R-A

IE-78001-R-A	In-circuit emulator common to 78K/0 Series
IE-70000-98-IF-C	Interface adapter required when using PC-9800 series as host machine (excluding notebook PCs, C bus supported)
IE-70000-PC-IF-C	Interface adapter required when using IBM PC/AT compatible as host machine (ISA bus supported)
IE-78000-R-SV3	Interface adapter and cable when using EWS as host machine
IE-70000-PCI-IF	Adapter when using PC that incorporates PCI bus as host machine
IE-78018-NS-EM1	Emulation board common to μPD78018F Subseries
IE-78K0-R-EX1	Emulation probe conversion board necessary to use IE-78018-NS-EM1 on IE-78001-R-A
EP-78240CW-R	Emulation probe for 64-pin plastic shrink DIP (CW type)
EP-78240GC-R	Emulation probe for 64-pin plastic QFP (GC-AB8 type)
EV-9200GC-64	Socket to be mounted on a target system board made for 64-pin plastic QFP (GC-AB8 type)
ID78K0	Integrated debugger for IE-78001-R-A
SM78K0	System simulator common to 78K/0 Series
DF78014	Device file common to μPD78018F Subseries

(4) Real-time OS

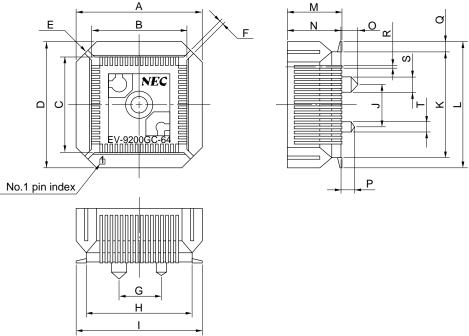
RX78K/0	Real-time OS for 78K/0 Series
MX78K0	OS for 78K/0 Series

(5) Cautions on using development tools

- The ID-78K0-NS, ID78K0, and SM78K0 are used in combination with the DF78014.
- The CC78K/0 and RX78K/0 are used in combination with the RA78K/0 and the DF78014.
- NP-64CW and NP-64GC are products made by Naitou Densei Machidaseisakusho (TEL: +81-44-822-3813).

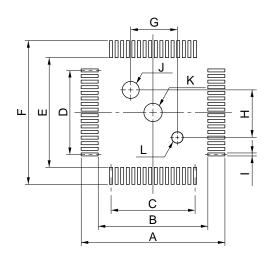
Contact an NEC distributor regarding the purchase of these products.

- For third party development tools, see the 78K/0 Series Selection Guide (U11126E).
- The host machine and OS suitable for each software are as follows:


Host Machine	PC	EWS
[OS]	PC-9800 series [Windows™]	HP9000 series 700™ [HP-UX™]
	IBM PC/AT compatible	SPARCstation™ [SunOS™, Solaris™]
Software	[Japanese/English Windows]	NEWS™ (RISC) [NEWS-OS™]
RA78K/0	√ Note	√
CC78K/0	Note	√
PG-1500 Controller	Note	_
ID78K0-NS	\checkmark	_
ID78K0	\checkmark	V
SM78K0	\checkmark	_
RX78K/0	√ Note	√
MX78K0	√ Note	√

Note DOS-based software

Drawing of Conversion Socket (EV-9200GC-64) and Recommended Footprint


Figure A-1. Drawing of EV-9200GC-64 (for reference only)

EV-9200GC-64-G0E

ITEM	MILLIMETERS	INCHES
Α	18.8	0.74
В	14.1	0.555
С	14.1	0.555
D	18.8	0.74
E	4-C 3.0	4-C 0.118
F	0.8	0.031
G	6.0	0.236
Н	15.8	0.622
I	18.5	0.728
J	6.0	0.236
К	15.8	0.622
L	18.5	0.728
М	8.0	0.315
N	7.8	0.307
0	2.5	0.098
Р	2.0	0.079
Q	1.35	0.053
R	0.35±0.1	$0.014^{+0.004}_{-0.005}$
S	φ2.3	φ0.091
Т	φ1.5	φ0.059

Figure A-2. Recommended Footprint of EV-9200GC-64 (for reference only)

EV-9200GC-64-P1E

ITEM	MILLIMETERS	INCHES
Α	19.5	0.768
В	14.8	0.583
С	0.8±0.02 × 15=12.0±0.05	$0.031^{+0.002}_{-0.001} \times 0.591 = 0.472^{+0.003}_{-0.002}$
D	$0.8\pm0.02\times15=12.0\pm0.05$	$0.031^{+0.002}_{-0.001} \times 0.591 = 0.472^{+0.003}_{-0.002}$
Е	14.8	0.583
F	19.5	0.768
G	6.00±0.08	$0.236^{+0.004}_{-0.003}$
Н	6.00±0.08	$0.236^{+0.004}_{-0.003}$
1	0.5±0.02	$0.197^{+0.001}_{-0.002}$
J	φ2.36±0.03	ϕ 0.093 $^{+0.001}_{-0.002}$
К	φ2.2±0.1	ϕ 0.087 ^{+0.004} _{-0.005}
L	φ1.57±0.03	$\phi_{0.062^{+0.001}_{-0.002}}$

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

* APPENDIX B. RELATED DOCUMENTS

Device Related Documents

Document Name		Document No.	
		Japanese	English
μPD78011FY, 78012FY, 78013FY, 78014FY, 78015FY, 78016FY, 78018FY Data Sheet		U10281J	U10281E
μPD78P018FY Data Sheet		U10989J	This document
μPD78018F, 78018FY Subseries User's Manual		U10659J	U10659E
78K/0 Series User's Manual - Instructions		U12326J	U12326E
78K/0 Series Instruction List		U10903J	_
78K/0 Series Instruction Set		U10904J	_
μPD78018FY Subseries Special Function Register List		U10287J	_
78K/0 Series Application Note	Basics (I)	U12704J	U12704E
	Floating-Point Arithmetic Programs	U13482J	IEA-1289

Development Tool Documents (User's Manual) (1/2)

Document Name		Document No.	
		Japanese	English
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly Language	U11801J	U11801E
	Structured Assembly Language	U11789J	U11789E
RA78K Series Structured Assembler Preprocessor		U12323J	EEU-1402
CC78K0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
CC78K/0 C Compiler Application Note	Programming Know-How	U13034J	U13034E
PG-1500 PROM Programmer		U11940J	U11940E
PG-1500 Controller PC-9800 Series (MS-DOS™) Based		EEU-704	EEU-1291
PG-1500 Controller IBM PC Series (PC DOS™) Based		EEU-5008	U10540E
IE-78K0-NS		To be prepared	To be prepared
IE-78001-R-A		To be prepared	To be prepared
IE-78K0-R-EX1		To be prepared	To be prepared
IE-78018-NS-EM1		U13289J	To be prepared
EP-78240		EEU-986	U10332E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Development Tool Documents (User's Manual) (2/2)

Document Name		Document No.	
		Japanese	English
SM78K0 System Simulator Windows Based	Reference	U10181J	U10181E
SM78K Series System Simulator	External Part User Open	U10092J	U10092E
	Interface Specification		
ID78K0-NS Integrated Debugger Windows Based	Reference	U12900J	U12900E
ID78K0 Integrated Debugger EWS based	Reference	U11151J	_
ID78K0 Integrated Debugger PC based	Reference	U11539J	U11539E
ID78K0 Integrated Debugger Windows based	Guide	U11649J	U11649E

Embedded Software Documents (User's Manual)

Document Name		Document No.	
		Japanese	English
78K/0 Series Real-Time OS	Basic	U11537J	U11537E
	Installation	U11536J	U11536E
78K/0 Series OS MX78K0	Basic	U12257J	U12257E

Other Documents

Document Name	Document No.	
Document Name	Japanese	English
NEC IC Package Manual (CD-ROM)	_	C13388E
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Guide to Prevent Damages for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	C11892E
Guide to Quality Assurance for Semiconductor Devices	_	MEI-1202
Microcomputer – Related Product Guide – Third Parties	U11416J	_

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

NOTES FOR CMOS DEVICES.

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Purchase of NEC I²C components conveys a license under the Phillips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Phillips.

FIP, IEBus, and QTOP are trademarks of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT and PC DOS are trademarks of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil

Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

J98. 11

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed: μPD78P018FYDW, 78P018FYKK-S

The customer must judge the need for license: µPD78P018FYCW, 78P018FYGC-AB8

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.